Advertisements
Advertisements
प्रश्न
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
उत्तर
\[\text{ It is given that } \vec{a} \text{ and } \vec{b} \text{ are unit vectors } .\]
\[ \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right| = 1 . . . (1)\]
\[\text{ Now } , \]
\[ \left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2 \]
\[ = \left( \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta \right)^2 + \left( \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta \right)^2 \]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \left( \cos^2 \theta + \sin^2 \theta \right)\]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \left( 1 \right)\]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \]
\[ = 1^2 1^2 [\text{ From } (1)]\]
= 1
APPEARS IN
संबंधित प्रश्न
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Find λ and μ if `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.
Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Let `veca = 4hati + 5hatj - hatk`, `vecb = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`
\[\text{ If } \vec{a} = \hat { i } + 3 \hat { j } - 2 \hat { k } \text{ and } \vec{b} = - \hat { i } + 3 \hat { k } , \text{ find } \left| \vec{a} \times \vec{b} \right| .\]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\] Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.
Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and \[\left| \vec{a} \right| = 5,\] then write the value of \[\left| \vec{b} \right| .\]
Define vector product of two vectors.
Write the value \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \hat{ i } \cdot \hat{ j } .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.
If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.