English

Div If → a = ^ I + ^ J − ^ K , → B = − ^ I + 2 ^ J + 2 ^ K and → C = − ^ I + 2 ^ J − ^ K , Then a Unit Vector Normal to the Vectors → a + → B and → B − → C is - Mathematics

Advertisements
Advertisements

Question

If \[\vec{a} = \hat{ i }  + \hat{ j }  - \hat{ k }  , \vec{b} = - \hat{ i }  + 2\hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{c} = - \hat{ i } + 2 \hat{ j }  - \hat{ k }  ,\]  then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{b} - \vec{c}\]  is

 

Options

  • \[\hat{ i } \]

  • \[\hat{ j } \]

  • \[\hat{ k } \]

  • none of these 

MCQ

Solution

\[\vec{a} + \vec{b} = 0 \hat{ i }  + 3 \hat{ j }  + \hat{ k }  \]

\[ \vec{b} - \vec{c} = 0 \hat{ i  }- 0 \hat { j }  + 3 \hat{ k }  \]

\[\left( \vec{a} + \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) = \begin{vmatrix}\hat{ i  } & \hat{ j }  & \hat{ k }  \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{vmatrix}\]

\[ = 9 \hat{ i }  \]

\[\left| \left( \vec{a} + \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) \right| = 9 \left| \hat{ i }  \right|\]

\[ = 9\left( 1 \right)\]

\[ = 9\]

\[\text{ Unit vector perpendicular to both } \vec{a} + \vec{b} \text{ and  } \vec{b} - \vec{c} = \frac{\left( \vec{a} + \vec{b} \right) \times \left( \vec{b} - \vec{c} \right)}{\left| \left( \vec{a} + \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) \right|}\]

\[ = \frac{9 \hat{ i } }{9}\]

\[ = \hat{ i } \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - MCQ [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
MCQ | Q 7 | Page 35

RELATED QUESTIONS

Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx  vec a)|/|(vec b -  vec a)|`


Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].


\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


\[\text{ If }  \left| \vec{a} \right| = 10, \left| \vec{b} \right| = 2 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 16, \text{ find }  \vec{a} . \vec{b} .\]

 


For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 

Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]

 
 

Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×