हिंदी

A Unit Vector Perpendicular to Both ^ I + ^ J and ^ J + ^ K is - Mathematics

Advertisements
Advertisements

प्रश्न

A unit vector perpendicular to both \[\hat{ i }  + \hat{ j } \text{ and }  \hat{ j } + \hat{ k } \] is

 

विकल्प

  • \[\hat{ i }  - \hat{ j }  + \hat{ k } \]

  • \[\hat{ i }  + \hat{ j }  + \hat{ k } \] 

  • \[ \frac1 {\sqrt3}  ( \hat{ i }  + \hat{ j }  + \hat{ k } ) \] 

  • \[ \frac1 {\sqrt3}  ( \hat{ i }  - \hat{ j }  + \hat{ k } ) \] 

MCQ

उत्तर

\[ \frac1 {\sqrt3}  ( \hat{ i }  - \hat{ j }  + \hat{ k } ) \] 

\[\text{ Let } :\]

\[ \vec{a} = \hat{ i }  + \hat{ j }  + 0 \hat{ k }  \]

\[ \vec{b} = 0 \hat{ i } + \hat{ j }  + \hat{ k }  \]

\[ \therefore \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{vmatrix}\]

\[ = \hat{ i  } - \hat{ j }  + \hat{ k } \]

\[ \Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{1 + 1 + 1}\]

\[ = \sqrt{3}\]

\[\text{ Unit vector perpendicular to } \vec{a} \text{ and } \vec{b} =\frac{\vec{a} \times \vec{b}}{\left| \vec{a} \times \vec{b} \right|} = \frac{\hat{ i }  - \hat{ j }  + \hat{ k } }{\sqrt{3}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - MCQ [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
MCQ | Q 8 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find a vector of magnitude 49, which is perpendicular to both the vectors  \[2 \hat{ i }   + 3 \hat{ j }  + 6 \hat{ k }  \text{ and } 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  .\]

 


Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are  \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are \[2 \hat{ i }  + 3 \hat{ j } + 6 \hat{ k } \text{ and }  3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k } \]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

If either  \[\vec{a} = \vec{0} \text{ or }  \vec{b} = \vec{0} , \text{ then }  \vec{a} \times \vec{b} = \vec{0} .\]  Is the converse true? Justify your answer with an example.

 

Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

For any two vectors  \[\vec{a} \text{ and }  \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.

 
 

Write the value of \[\hat{ i }  \times \left(\hat{  j }  \times \hat{ k }  \right) .\]

 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i }  = \hat{ j }  , \text{ find }  \vec{a} . \hat{ i } \] .

 

If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


Vectors  \[\vec{a} \text{ and }  \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\]  is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .

 


Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

If \[\vec{a} = \hat{ i }  + \hat{ j }  - \hat{ k }  , \vec{b} = - \hat{ i }  + 2\hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{c} = - \hat{ i } + 2 \hat{ j }  - \hat{ k }  ,\]  then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{b} - \vec{c}\]  is

 

If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×