English

Prove That, for Any Three Vectors → a , → B , → C [ → a + → B , → B + → C , → C + → a ] = 2 [ → a , → B , → C ] . - Mathematics

Advertisements
Advertisements

Question

Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].

Solution

We have:

\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right]\]

\[ = \left( \vec{a} + \vec{b} \right) . \left[ \left( \vec{b} + \vec{c} \right) \times \left( \vec{c} + \vec{a} \right) \right]\]

\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \right] (\text { By distributive law })\]

\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \right] ( \because \vec{c} \times \vec{c} = 0)\]

\[ = \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{a} . \left( \vec{b} \times \vec{a} \right) + \vec{b .} \left( \vec{b} \times \vec{a} \right) + \vec{a} . \left( \vec{c} \times \vec{a} \right) + \vec{b .} \left( \vec{c} \times \vec{a} \right)\]

\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{a} \right] + \left[ \vec{b} , \vec{b} , \vec{a} \right] + \left[ \vec{a} , \vec{c} , \vec{a} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] \]

\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] ( \because \text { scalar triple product with two equal vectors is } 0) \]

\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{c} \right] \left( \because \left[ \vec{b} , \vec{c} , \vec{a} \right] = \left[ \vec{a} , \vec{b} , \vec{c} \right] \right)\]

\[ = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]

Hence,

\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 3

RELATED QUESTIONS

If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a  unit vector, then find the angle between `veca` and `vecb`


 

Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`

 

If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`

 


Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.


If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`


Find \[\vec{a} \cdot \vec{b}\] when 

\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 5\hat{i} - 9 \hat{j} + 2\hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]


If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\] 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude. 


If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] 


If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\]  is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\] 


If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\]  find the projection of \[\vec{a} \text{ on } \vec{b}\] 


Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes. 


Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\] 


If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\] 


For what value of λ are the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?


If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]


If the vectors \[\vec{a}\] and \[\vec{b}\]  are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.


Let  `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.


The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-


If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to


If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×