Advertisements
Advertisements
Question
Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].
Solution
We have:
\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right]\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \left( \vec{b} + \vec{c} \right) \times \left( \vec{c} + \vec{a} \right) \right]\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \right] (\text { By distributive law })\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \right] ( \because \vec{c} \times \vec{c} = 0)\]
\[ = \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{a} . \left( \vec{b} \times \vec{a} \right) + \vec{b .} \left( \vec{b} \times \vec{a} \right) + \vec{a} . \left( \vec{c} \times \vec{a} \right) + \vec{b .} \left( \vec{c} \times \vec{a} \right)\]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{a} \right] + \left[ \vec{b} , \vec{b} , \vec{a} \right] + \left[ \vec{a} , \vec{c} , \vec{a} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] \]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] ( \because \text { scalar triple product with two equal vectors is } 0) \]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{c} \right] \left( \because \left[ \vec{b} , \vec{c} , \vec{a} \right] = \left[ \vec{a} , \vec{b} , \vec{c} \right] \right)\]
\[ = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]
Hence,
\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]
APPEARS IN
RELATED QUESTIONS
If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a unit vector, then find the angle between `veca` and `vecb`
Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`
Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 5\hat{i} - 9 \hat{j} + 2\hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude.
If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\]
If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\] is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\]
If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\] find the projection of \[\vec{a} \text{ on } \vec{b}\]
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\]
If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\]
For what value of λ are the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?
If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.
Let `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.
The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.