Advertisements
Advertisements
प्रश्न
Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].
उत्तर
We have:
\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right]\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \left( \vec{b} + \vec{c} \right) \times \left( \vec{c} + \vec{a} \right) \right]\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \right] (\text { By distributive law })\]
\[ = \left( \vec{a} + \vec{b} \right) . \left[ \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \right] ( \because \vec{c} \times \vec{c} = 0)\]
\[ = \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{a} . \left( \vec{b} \times \vec{a} \right) + \vec{b .} \left( \vec{b} \times \vec{a} \right) + \vec{a} . \left( \vec{c} \times \vec{a} \right) + \vec{b .} \left( \vec{c} \times \vec{a} \right)\]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{a} \right] + \left[ \vec{b} , \vec{b} , \vec{a} \right] + \left[ \vec{a} , \vec{c} , \vec{a} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] \]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{b} , \vec{c} , \vec{a} \right] ( \because \text { scalar triple product with two equal vectors is } 0) \]
\[ = \left[ \vec{a} , \vec{b} , \vec{c} \right] + \left[ \vec{a} , \vec{b} , \vec{c} \right] \left( \because \left[ \vec{b} , \vec{c} , \vec{a} \right] = \left[ \vec{a} , \vec{b} , \vec{c} \right] \right)\]
\[ = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]
Hence,
\[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2\left[ \vec{a} , \vec{b} , \vec{c} \right]\]
APPEARS IN
संबंधित प्रश्न
If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a unit vector, then find the angle between `veca` and `vecb`
If `vec a, vec b, vec c` are unit vectors such that `veca+vecb+vecc=0`, then write the value of `vec a.vecb+vecb.vecc+vecc.vec a`.
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
The scalar product of the vector `hati + hatj + hatk` with a unit vector along the sum of vectors `2hati + 4hatj - 5hatk` and `lambdahati + 2hatj + 3hatk` is equal to one. Find the value of `lambda`.
Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]
If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\] holds.
If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\]
If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\] is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\]
Write the component of \[\vec{b}\] along \[\vec{a}\]
If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\]
For what value of λ are the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?
Find the value of λ if the vectors \[2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \text{ and } 3 \hat{i} + 2 \hat{j} - 4 \hat{k}\] are perpendicular to each other.
Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\] is 4 units.
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.
The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.
Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =
The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
Three vectors `veca, vecb` and `vecc` satisfy the condition `veca + vecb + vecc = vec0`. Evaluate the quantity μ = `veca.vecb + vecb.vecc + vecc.veca`, if `|veca|` = 3, `|vecb|` = 4 and `|vecc|` = 2.