Advertisements
Advertisements
प्रश्न
For what value of λ are the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?
उत्तर
\[\text{ We have }\]
\[ \vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k} \]
\[\text{ Given that } \vec{a} \text{ and } \vec{b} \text{ are perpendicular }.\]
\[ \Rightarrow \vec{a} . \vec{b} = 0\]
\[ \Rightarrow \left( 2 \hat{i} + \lambda \hat{j} + \hat{k} \right) . \left( \hat{i} - 2 \hat{j} + 3 \hat{k} \right) = 0\]
\[ \Rightarrow 2 - 2\lambda + 3 = 0\]
\[ \Rightarrow 5 - 2\lambda = 0\]
\[ \therefore \lambda = \frac{5}{2}\]
APPEARS IN
संबंधित प्रश्न
If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a unit vector, then find the angle between `veca` and `vecb`
If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`
Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.
If `vec a, vec b, vec c` are unit vectors such that `veca+vecb+vecc=0`, then write the value of `vec a.vecb+vecb.vecc+vecc.vec a`.
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} + 2 \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|\] holds.
If \[\vec{b}\] is a unit vector such that\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 8, \text{ find } \left| \vec{a} \right| .\]
If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} . \vec{b} = 2, \text{ find } \left| \vec{a} - \vec{b} \right| .\]
For any two non-zero vectors, write the value of \[\frac{\left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2}{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2} .\]
If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\]
If \[\vec{a} , \vec{b} \text{ and } \vec{c}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} + \vec{c} \right| .\]
Find the angle between the vectors \[\vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - \hat{k} .\]
Find the projection of \[\vec{a} \text{ on } \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 8 \text{ and } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k} .\]
If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\]
Write the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes \[\sqrt{3}\] and 2 respectively if \[\vec{a} \cdot \vec{b} = \sqrt{6} .\]
For what value of λ are the vectors \[\vec{a} = 2 \text{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?
If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.
If \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\]
Let `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.
If `hata` and `hatb` are unit vectors, then prove that `|hata + hatb| = 2 cos theta/2`, where θ is the angle between them.
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.
If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.