हिंदी

If | → a | = 2 , ∣ ∣ → B ∣ ∣ = 3 and → a ⋅ → B = 3 , Find the Projection of → B on → a - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\] 

योग

उत्तर

\[\text{ We have }\]
\[\left| \vec{a} \right| = 2 \text{ and } \vec{a} . \vec{b} = 3\]
\[\text{ So,the projection of } \vec{b} \text{ on } \vec{a} \text{  is }\]
\[\left( \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right|} \right)\]
\[ = \frac{3}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - very short answer [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
very short answer | Q 31 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the projection of the vector `hati+3hatj+7hatk`  on the vector `2hati-3hatj+6hatk`


If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a  unit vector, then find the angle between `veca` and `vecb`


 

Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`

 

Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.


If  `vec a, vec b, vec c`  are unit vectors such that `veca+vecb+vecc=0`, then write the value of  `vec a.vecb+vecb.vecc+vecc.vec a`.


If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`


The scalar product of the vector `hati + hatj + hatk` with a unit vector along the sum of vectors `2hati + 4hatj - 5hatk` and  `lambdahati + 2hatj +  3hatk` is equal to one. Find the value of `lambda`.


Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units


Find \[\vec{a} \cdot \vec{b}\] when

\[\vec{a} = \hat{j} + 2 \hat{k}  \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]


Find \[\vec{a} \cdot \vec{b}\] when 

\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]


\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]


For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\] holds. 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude. 


If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] 


If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\]  is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\] 


If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\]  find the projection of \[\vec{a} \text{ on } \vec{b}\] 


For any two non-zero vectors, write the value of \[\frac{\left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2}{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2} .\] 


Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes. 


Find the value of θ ∈(0, π/2) for which vectors \[\vec{a} = \left( \sin \theta \right) \hat{i} + \left( \cos \theta \right) \hat{j} \text{ and } \vec{b} = \hat{i} - \sqrt{3} \hat{j} + 2 \hat{k}\] are perpendicular.


Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\] 


If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\] 


Find the value of λ if the vectors \[2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \text{ and } 3 \hat{i} + 2 \hat{j} - 4 \hat{k}\] are perpendicular to each other. 


Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\]  is 4 units. 


Write the projection of \[\vec{b} + \vec{c} \text{ on } \vec{a} \text{ when } \vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\] 


If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]


If the vectors \[\vec{a}\] and \[\vec{b}\]  are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If the vectors \[\vec{a}\]  and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


Let  `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.


The angle between two vectors `vec"a"` and `vec"b"` with magnitudes `sqrt(3)` and 4, respectively, and `vec"a" * vec"b" = 2sqrt(3)` is ______.


If `hata` and `hatb` are unit vectors, then prove that `|hata + hatb| = 2 cos  theta/2`, where θ is the angle between them.


Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =


If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to


If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×