Advertisements
Advertisements
प्रश्न
Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =
विकल्प
5
`3sqrt(2)`
`5sqrt(2)`
12
उत्तर
`5sqrt(2)`
Explanation:
We have `|veca|` = 3, `|vecb|` = 4 and `|vecc|` = 5.
It is given that `veca ⊥ (vecb + vecc), vecb ⊥ (vecc + veca)` and `vecc ⊥ (veca + vecb)`
⇒ `veca.(vecb + vecc)` = 0, `vecb. (vecc + veca)` = 0, `vecc.(veca + vecb)` = 0
⇒ `veca . vecb + veca . vecc` = 0, `vecb . vecc + vecb . veca` = 0, `vecc . veca + vecc. vecb` = 0
Adding all these, we get, `2(veca . vecb + vecb . vecc + vecc . veca)` = 0
⇒ `veca . vecb + vecb . vecc + vecc . veca` = 0
Now, `|veca + vecb + vecc|^2 = |veca|^2 + |vecb|^2 + |vecc|^2 + 2(veca . vecb + vecb . vecc + vecc . veca)` = 32 + 42 + 52 + 0 = 50
⇒ `|veca + vecb + vecc| = sqrt(50) = 5sqrt(2)`.