Advertisements
Advertisements
प्रश्न
Find the value of λ if the vectors \[2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \text{ and } 3 \hat{i} + 2 \hat{j} - 4 \hat{k}\] are perpendicular to each other.
उत्तर
\[\text{ Given }: 2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \text{ and } 3i + 2j - 4k \text{ are perpendicular to each other } . \]
\[\text{ So, their dot product is zero }.\]
\[\left( 2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \right) . \left( 3i + 2j - 4k \right)\]
\[ \Rightarrow 6 + 2\lambda - 12 = 0\]
\[ \Rightarrow 2\lambda - 6 = 0\]
\[ \Rightarrow \lambda = 3\]
APPEARS IN
संबंधित प्रश्न
Find the projection of the vector `hati+3hatj+7hatk` on the vector `2hati-3hatj+6hatk`
If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a unit vector, then find the angle between `veca` and `vecb`
Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
The scalar product of the vector `veca=hati+hatj+hatk` with a unit vector along the sum of vectors `vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk` is equal to one. Find the value of λ and hence, find the unit vector along `vecb +vecc`
Show that each of the given three vectors is a unit vector:
`1/7 (2hati + 3hatj + 6hatj), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`
Also, show that they are mutually perpendicular to each other.
The scalar product of the vector `hati + hatj + hatk` with a unit vector along the sum of vectors `2hati + 4hatj - 5hatk` and `lambdahati + 2hatj + 3hatk` is equal to one. Find the value of `lambda`.
Prove that `(veca + vecb).(veca + vecb)` = `|veca|^2 + |vecb|^2` if and only if `veca . vecb` are perpendicular, given `veca != vec0, vecb != vec0.`
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 5\hat{i} - 9 \hat{j} + 2\hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
If the vectors \[3 \hat{i} + m \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} - 8 \hat{k}\] are orthogonal, find m.
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude.
If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} . \vec{b} = 2, \text{ find } \left| \vec{a} - \vec{b} \right| .\]
If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\] find the projection of \[\vec{a} \text{ on } \vec{b}\]
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Write the component of \[\vec{b}\] along \[\vec{a}\]
Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\] where \[\vec{a}\] is any vector.
Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\]
Find the angle between the vectors \[\vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - \hat{k} .\]
Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\] are parallel vectors .
Write the projection of the vector \[7 \hat{i} + \hat{j} - 4 \hat{k}\] on the vector \[2 \hat{i} + 6 \hat{j}+ 3 \hat{k} .\]
Write the projection of \[\vec{b} + \vec{c} \text{ on } \vec{a} \text{ when } \vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]
If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.
Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.
The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.
If `hata` and `hatb` are unit vectors, then prove that `|hata + hatb| = 2 cos theta/2`, where θ is the angle between them.
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.
If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.
If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.