हिंदी

If → a and → B Are Unit Vectors, Then Find the Angle Between → a and → B Given that ( √ 3 → a − → B ) is a Unit Vector. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.      

उत्तर

Let the angle between \[\vec{a}\] and \[\vec{b}\] be \[\theta\] It is given that \[\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \sqrt{3} \vec{a} - \vec{b} \right| = 1\]  

\[\left| \sqrt{3} \vec{a} - \vec{b} \right| = 1\]
\[ \Rightarrow \left| \sqrt{3} \vec{a} - \vec{b} \right|^2 = 1\]
\[ \Rightarrow \left| \sqrt{3} \vec{a} \right|^2 - 2\sqrt{3} \vec{a} . \vec{b} + \left| \vec{b} \right|^2 = 1\]
\[ \Rightarrow 3 \left| \vec{a} \right|^2 - 2\sqrt{3}\left| \vec{a} \right|\left| \vec{b} \right|\cos\theta + \left| \vec{b} \right|^2 = 1\] 

\[\Rightarrow 3 \times 1 - 2\sqrt{3} \times 1 \times 1 \times \cos\theta + 1 = 1\]

\[ \Rightarrow 2\sqrt{3}\cos\theta = 3\]

\[ \Rightarrow \cos\theta = \frac{\sqrt{3}}{2} = \cos\frac{\pi}{6}\]

\[ \Rightarrow \theta = \frac{\pi}{6}\]  

Thus, the angle between \[\vec{a}\] and \[\vec{b}\] is \[\frac{\pi}{6}\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - very short answer [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
very short answer | Q 42 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the projection of the vector `hati+3hatj+7hatk`  on the vector `2hati-3hatj+6hatk`


Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.


If  `vec a, vec b, vec c`  are unit vectors such that `veca+vecb+vecc=0`, then write the value of  `vec a.vecb+vecb.vecc+vecc.vec a`.


Prove that `(veca + vecb).(veca + vecb)` = `|veca|^2 + |vecb|^2` if and only if `veca . vecb` are perpendicular, given `veca != vec0, vecb != vec0.`


Find \[\vec{a} \cdot \vec{b}\] when

\[\vec{a} = \hat{j} + 2 \hat{k}  \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]


\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]


What is the angle between vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 2 and \[\sqrt{3}\] respectively? Given \[\vec{a} . \vec{b} = \sqrt{3} .\]


If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\] 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]  


For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|\] holds.


If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude. 


If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\]  is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\] 


If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\]  find the projection of \[\vec{a} \text{ on } \vec{b}\] 


Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\]  where \[\vec{a}\] is any vector. 


Write a vector satisfying \[\vec{a} . \hat{i} = \vec{a} . \left( \hat{i} + \hat{j} \right) = \vec{a} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 1 .\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, find the angle between \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} .\]


Write the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes \[\sqrt{3}\] and 2 respectively if \[\vec{a} \cdot \vec{b} = \sqrt{6} .\]


Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] 


Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\]  is 4 units. 


Write the value of λ so that the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] are perpendicular to each other. 


If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\] 


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.


Let  `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.


If `hata` and `hatb` are unit vectors, then prove that `|hata + hatb| = 2 cos  theta/2`, where θ is the angle between them.


Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =


The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-


If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.


If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.


If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×