Advertisements
Advertisements
प्रश्न
If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\] find the projection of \[\vec{a} \text{ on } \vec{b}\]
उत्तर
\[\text{ We have }\]
\[ \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} \]
\[\text{ The projection of } \vec{a} \text{ on } \vec{b} \text{ is }\]
\[\frac{\vec{a} . \vec{b}}{\left| \vec{b} \right|}\]
\[ = \frac{\left( \hat{i} - \hat{j} \right) . \left( - \hat{j} + \hat{k} \right)}{\left| - \hat{j} + \hat{k}90 \right|}\]
\[ = \frac{0 + 1 + 0}{\sqrt{1 + 1}}\]
\[ = \frac{1}{\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
The scalar product of the vector `veca=hati+hatj+hatk` with a unit vector along the sum of vectors `vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk` is equal to one. Find the value of λ and hence, find the unit vector along `vecb +vecc`
Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 5\hat{i} - 9 \hat{j} + 2\hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]
What is the angle between vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 2 and \[\sqrt{3}\] respectively? Given \[\vec{a} . \vec{b} = \sqrt{3} .\]
Find the cosine of the angle between the vectors \[4 \hat{i} - 3 \hat{j} + 3 \hat{k} \text{ and } 2 \hat{i} - \hat{j} - \hat{k} .\]
If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.
If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\] holds.
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 60° such that \[\vec{a} . \vec{b} = 8,\] write the value of their magnitude.
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\] where \[\vec{a}\] is any vector.
If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\]
Find the angle between the vectors \[\vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - \hat{k} .\]
Find the projection of \[\vec{a} \text{ on } \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 8 \text{ and } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k} .\]
Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\] are parallel vectors .
Find the value of λ if the vectors \[2 \hat{i} + \lambda \hat{j} + 3 \hat{k} \text{ and } 3 \hat{i} + 2 \hat{j} - 4 \hat{k}\] are perpendicular to each other.
Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\] is 4 units.
Write the value of λ so that the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] are perpendicular to each other.
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\]
The angle between two vectors `vec"a"` and `vec"b"` with magnitudes `sqrt(3)` and 4, respectively, and `vec"a" * vec"b" = 2sqrt(3)` is ______.
Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =
The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.