Advertisements
Advertisements
प्रश्न
If \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\]
उत्तर
\[\text{ We } have\]
\[\left| \vec{a} + \vec{b} \right| = \sqrt{3}\]
\[\text{ Squaring both sides , we get } \]
\[ \left| \vec{a} + \vec{b} \right|^2 = 3\]
\[ \Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} . \vec{b} = 3\]
\[ \Rightarrow 1 + 1 + 2 \vec{a} . \vec{b} = 3 ...........(\text{ Because } \vec{a} \text{ and } \vec{b} \text{ are unit vectors) }\]
\[ \Rightarrow 2 + 2 \vec{a} . \vec{b} = 3\]
\[ \Rightarrow 2 \vec{a} . \vec{b} = 1\]
\[ \Rightarrow 2 \vec{a} . \vec{b} = 1\]
\[ \Rightarrow \vec{a} . \vec{b} = \frac{1}{2} . . . \left( 1 \right)\]
\[\text{ Now },\]
\[\left( 2 \vec{a} - 5 \vec{b} \right) . \left( 3 \vec{a} + \vec{b} \right)\]
\[ = 6 \left| \vec{a} \right|^2 + 2 \vec{a} . \vec{b} - 15 \vec{b} . \vec{a} - 5 \left| \vec{b} \right|^2 \]
\[ = 6 \left| \vec{a} \right|^2 + 2 \vec{a} . \vec{b} - 15 \vec{a} . \vec{b} - 5 \left| \vec{b} \right|^2 ( \vec{a} . \vec{b} = \vec{b} . \vec{a)} \]
\[ = 6 \left| \vec{a} \right|^2 - 13 \vec{a} . \vec{b} - 5 \left| \vec{b} \right|^2 \]
\[ = 6\left( 1 \right) - 13 \left( \frac{1}{2} \right) - 5\left( 1 \right) ...........\left[ \text{ From } (1) \right]\]
\[ = 1 - \frac{13}{2}\]
\[ = \frac{- 11}{2}\]
APPEARS IN
संबंधित प्रश्न
Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
Show that the vectors `veca, vecb` are coplanar if `veca+vecb, vecb+vecc ` are coplanar.
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
Show that each of the given three vectors is a unit vector:
`1/7 (2hati + 3hatj + 6hatj), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`
Also, show that they are mutually perpendicular to each other.
Prove that `(veca + vecb).(veca + vecb)` = `|veca|^2 + |vecb|^2` if and only if `veca . vecb` are perpendicular, given `veca != vec0, vecb != vec0.`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} + 2 \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
\[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\vec{a} . \vec{b} = 6, \left| \vec{a} \right| = 3 \text{ and } \left| \vec{b} \right| = 4 .\] Write the projection of \[\vec{a} \text{ on } \vec{b}\]
If the vectors \[3 \hat{i} + m \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} - 8 \hat{k}\] are orthogonal, find m.
If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.
If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|\] holds.
If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\]
If \[\vec{b}\] is a unit vector such that\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 8, \text{ find } \left| \vec{a} \right| .\]
If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\] is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\]
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\] where \[\vec{a}\] is any vector.
Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\]
If \[\vec{a} , \vec{b} \text{ and } \vec{c}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} + \vec{c} \right| .\]
If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\]
Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\] is 4 units.
For what value of λ are the vectors \[\vec{a} = 2 \text{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?
Write the projection of \[\vec{b} + \vec{c} \text{ on } \vec{a} \text{ when } \vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]
If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.
Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.