हिंदी

For Any Two Vectors → a and → B Write When ∣ ∣ → a + → B ∣ ∣ = | → a | + ∣ ∣ → B ∣ ∣ Holds. - Mathematics

Advertisements
Advertisements

प्रश्न

For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\] holds. 

योग

उत्तर

\[\text{ Given that }\]
\[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\]
\[\text{ Squaring both sides,we get }\]
\[ \left| \vec{a} + \vec{b} \right|^2 = \left( \left| \vec{a} \right| + \left| \vec{b} \right| \right)^2 \]
\[ \Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} . \vec{b} = \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2\left| \vec{a} \right| \left| \vec{b} \right|\]
\[ \Rightarrow \vec{a} . \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right|\]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta = \left| \vec{a} \right| \left| \vec{b} \right|.............. (\text{ where } \theta \text{ is the angle between } \vec{a} \text{ and } \vec{b} )\]
\[ \Rightarrow \cos \theta = 1\]
\[ \Rightarrow \theta = 0^o \]
\[ \Rightarrow \vec{a} \text{ and } \vec{b} \text{ are parallel }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - very short answer [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
very short answer | Q 8 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a  unit vector, then find the angle between `veca` and `vecb`


If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`

 


If  `vec a, vec b, vec c`  are unit vectors such that `veca+vecb+vecc=0`, then write the value of  `vec a.vecb+vecb.vecc+vecc.vec a`.


If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`


Show that each of the given three vectors is a unit vector:

`1/7 (2hati + 3hatj + 6hatj), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`

Also, show that they are mutually perpendicular to each other.


Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`


Find \[\vec{a} \cdot \vec{b}\] when 

\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and  }\vec{b}\] perpendicular to each other if \[\vec{a} = \lambda \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{b} = 4\hat{i} - 9 \hat{j} + 2\hat{k}\] 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]


What is the angle between vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 2 and \[\sqrt{3}\] respectively? Given \[\vec{a} . \vec{b} = \sqrt{3} .\]


\[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\vec{a} . \vec{b} = 6, \left| \vec{a} \right| = 3 \text{ and } \left| \vec{b} \right| = 4 .\] Write the projection of \[\vec{a} \text{ on } \vec{b}\] 


Find the cosine of the angle between the vectors \[4 \hat{i} - 3 \hat{j} + 3 \hat{k} \text{ and } 2 \hat{i} - \hat{j} - \hat{k} .\] 


If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\] 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]  


If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] 


If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\]  find the projection of \[\vec{a} \text{ on } \vec{b}\] 


Write the component of \[\vec{b}\] along \[\vec{a}\] 


Find the projection of \[\vec{a} \text{ on } \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 8 \text{ and } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k} .\] 


Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\]    are parallel vectors . 


Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] 


For what value of λ are the vectors \[\vec{a} = 2 \text{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?


Write the value of λ so that the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] are perpendicular to each other. 


If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]


If the vectors \[\vec{a}\] and \[\vec{b}\]  are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If the vectors \[\vec{a}\]  and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.      


If  \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\] 


The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.


If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to


If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.


If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.


If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×