मराठी

If → a = 2 ^ I − ^ J + ^ K → B = ^ I + ^ J − 2 ^ K → C = ^ I + 3 ^ J − ^ K Find λ Such that → a is Perpendicular to λ → B + → C - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  

बेरीज

उत्तर

The given vectors are \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  and  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] 

Now,  

\[\lambda \vec{b} + \vec{c} = \lambda\left( \hat{i} + \hat{j} - 2 \hat{k} \right) + \left( \hat{i} + 3 \hat{j} - \hat{k} \right) = \left( \lambda + 1 \right) \hat{i} + \left( \lambda + 3 \right) \hat{j} - \left( 2\lambda + 1 \right) \hat{k}\] It is given that 

\[\vec{a} \perp \left( \lambda \vec{b} + \vec{c} \right)\]

\[ \Rightarrow \vec{a} . \left( \lambda \vec{b} + \vec{c} \right) = 0\]

\[ \Rightarrow \left( 2 \hat{i} - \hat{j} + \hat{k} \right) . \left[ \left( \lambda + 1 \right) \hat{i} + \left( \lambda + 3 \right) \hat{j} - \left( 2\lambda + 1 \right) \hat{k} \right] = 0\]

\[ \Rightarrow 2\left( \lambda + 1 \right) - \left( \lambda + 3 \right) - \left( 2\lambda + 1 \right) = 0\]

\[ \Rightarrow 2\lambda + 2 - \lambda - 3 - 2\lambda - 1 = 0\]

\[ \Rightarrow \lambda = - 2\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 15 | पृष्ठ ३०

संबंधित प्रश्‍न

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Find the position vector of a point which divides the join of points with position vectors `veca-2vecb" and "2veca+vecb`externally in the ratio 2 : 1


Classify the following measures as scalar and vector.

10 kg


`veca and -veca` are collinear.


Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.


Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.


Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.


ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]

 where P and Q are the points (1, 2, 3) and (4, 5, 6).


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


Position vector of a point P is a vector whose initial point is origin.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×