मराठी

On Q, the Set of All Rational Numbers a Binary Operation * is Defined by a ∗ B = a + B 2 Show that * is Not Associative on Q. - Mathematics

Advertisements
Advertisements

प्रश्न

On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.

बेरीज

उत्तर

\[\text{Let } a, b, c \in Q . \text{Then}, \] 
\[a * \left( b * c \right) = a * \left( \frac{b + c}{2} \right)\] 
                       \[ = \frac{a + \left( \frac{b + c}{2} \right)}{2}\] 
                      \[ = \frac{2a + b + c}{4}\] 
\[\left( a * b \right) * c = \left( \frac{a + b}{2} \right) * c\] 
              \[ = \frac{\left( \frac{a + b}{2} \right) + c}{2}\] 
                  \[ = \frac{a + b + 2c}{4}\] 
\[\text{Thus,a} * \left( b * c \right) \neq \left( a * b \right) * c\] 
\[\text{ If a } = 1, b = 2, c = 3 \] 
\[1 * \left( 2 * 3 \right) = 1 * \left( \frac{2 + 3}{2} \right)\] 
        \[ = 1 * \frac{5}{2}\] 
       \[ = \frac{1 + \frac{5}{2}}{2}\] \[ = \frac{7}{4}\] 
\[\left( 1 * 2 \right) * 3 = \left( \frac{1 + 2}{2} \right) * 3\] 
        \[ = \frac{3}{2} * 3\] 
         \[ = \frac{\frac{3}{2} + 3}{2}\] 
        \[ = \frac{9}{4}\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{Q such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]

Thus, * is not associative on Q.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.2 | Q 13 | पृष्ठ १३

संबंधित प्रश्‍न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this. 

On Z+ define * by a * b = |a − b|

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Find the inverse of 5 under multiplication modulo 11 on Z11.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Define identity element for a binary operation defined on a set.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


The law a + b = b + a is called _________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


a * b = `((a + b))/2` ∀a, b ∈ N is


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×