Advertisements
Advertisements
प्रश्न
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
उत्तर
\[\text{Let } a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( \frac{b + c}{2} \right)\]
\[ = \frac{a + \left( \frac{b + c}{2} \right)}{2}\]
\[ = \frac{2a + b + c}{4}\]
\[\left( a * b \right) * c = \left( \frac{a + b}{2} \right) * c\]
\[ = \frac{\left( \frac{a + b}{2} \right) + c}{2}\]
\[ = \frac{a + b + 2c}{4}\]
\[\text{Thus,a} * \left( b * c \right) \neq \left( a * b \right) * c\]
\[\text{ If a } = 1, b = 2, c = 3 \]
\[1 * \left( 2 * 3 \right) = 1 * \left( \frac{2 + 3}{2} \right)\]
\[ = 1 * \frac{5}{2}\]
\[ = \frac{1 + \frac{5}{2}}{2}\] \[ = \frac{7}{4}\]
\[\left( 1 * 2 \right) * 3 = \left( \frac{1 + 2}{2} \right) * 3\]
\[ = \frac{3}{2} * 3\]
\[ = \frac{\frac{3}{2} + 3}{2}\]
\[ = \frac{9}{4}\]
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{Q such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on Q.
APPEARS IN
संबंधित प्रश्न
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define * by a * b = a + 4b2
Here, Z+ denotes the set of all non-negative integers.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
Define identity element for a binary operation defined on a set.
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
The law a + b = b + a is called _________________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b + ab for a, b ∈ Q
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
a * b = `((a + b))/2` ∀a, b ∈ N is
Subtraction and division are not binary operation on.