Advertisements
Advertisements
प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
उत्तर
We have
f(x)=2x3−9mx2+12m2x+1
⇒f'(x)=6x2−18mx+12m2
Also, f''(x)=12x−18m
Since, f(x) attains its maximum and minimum values at x = p and x = q, respectively, so f '(p) = 0 and
f '(q) = 0
f '(p) = 0
⇒6p2−18mp+12m2=0
⇒p2−3mp+2m2=0
⇒(p−2m)(p−m)=0
⇒p−2m =0 or p−m=0
⇒p=2m or p=m
Similarly,
f '(q) = 0
⇒q=2m or q=m
Now, consider the following cases:
Case I:
If p = 2m and q = 2m, then
p2=q
⇒4m2=2m
⇒2m2−m=0
⇒m(2m−1)=0
∴m=1/2 (m>0)
But, this gives p = 1 as the point of minima, which is not true.
Case II:
If p = 2m and q = m, then
p2=q
⇒4m2=m
⇒4m2−m=0
⇒m(4m−1)=0
∴m=1/4 (m>0)
But, this gives p = 12 as the point of minima, which is not true.
Case III:
If p = m and q = 2m, then
p2=q
⇒m2=2m
⇒m2−2m=0
⇒m(m−2)=0
∴m=2 (m>0)
For this case, p = 2 and q = 4 are the points of maxima and minima, respectively.
Case IV:
If p = m and q = m, then
p2=q
⇒m2=m
⇒m2−m=0
⇒m(m−1)=0
∴m=1 (m>0)
But, this gives q = 1 as the point of maxima, which is not true.
Hence, the value of m is 2.
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Find the second order derivatives of the following function x3 log x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Find the minimum value of (ax + by), where xy = c2.