मराठी

The Postmaster of a Local Post Office Wishes to Hire Extra Helpers During the Deepawali Season, Because of a Large Increase in the Volume of Mail Handling and Delivery. Because of the Limited Office Space and the Budgetary Conditions, the Number of Temporary Helpers Must Not Exceed 10. - Mathematics

Advertisements
Advertisements

प्रश्न

The postmaster of a local post office wishes to hire extra helpers during the Deepawali season, because of a large increase in the volume of mail handling and delivery. Because of the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10. According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs 225 a day and a woman receives Rs 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum ? Formulate an LPP and solve it graphically.

उत्तर

Let the postmaster hire x men and y women.

Clearly, x0, y0

Also, it is given that the number of temporary helpers must not exceed 10.

 x+y10

The given information can be represented in the tabular forms as

  Men
(x)
Women
(y)
Minimum Volume of Mails
Letters 300 400 3400
Packages 80 50 680
Payroll (Rs) 225 200  


Thus, the given LPP can be stated mathematically as follows:

Minimise Z = 225x + 200y

Subject to the constraints:

x+y10                            .....(1)

300x+400y3400   (constraint on letters)

3x+4y34                    .....(2)

80x+50y680   (constraint on packages)

8x+5y68                        .....(3)

and x, y0                         .....(4)

Converting the inequations into equations, we obtain the lines x + y = 10, 3x + 4y = 34, 8x + 5y = 68, x = 0 and y = 0.

These lines are drawn and the feasible region of the LPP is shaded. It is observed that the feasible region is a point (6, 4).

The value of the objective function at this point is given as Z = 2,150.

So, the minimum value of Z is 2150 at the point (6, 4).

Hence, the postmaster should hire 6 men and 4 women to keep the pay-roll at a minimum of Rs 2,150.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A small manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry, then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for the production of each unit of and B, and the number of man-hours the firm has available per week are as follows:

Gadget Foundry Machine-shop
A 10 5
B 6 4
 Firm's capacity per week 1000 600

The profit on the sale of A is Rs 30 per unit as compared with Rs 20 per unit of B. The problem is to determine the weekly production of gadgets A and B, so that the total profit is maximized. Formulate this problem as a LPP.

 


 


Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method:

Minimize: Z = 6x + 2y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.


Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints


The region represented by the inequalities x ≥ 0, y ≥ 0 lies in first quadrant.


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


Solve the following problem :

Minimize Z = 2x + 3y Subject to x – y ≤ 1, x + y ≥ 3, x ≥ 0, y ≥ 0


A carpenter makes chairs and tables, profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines, Assembling, Finishing and Polishing. The time required for each product in hours and the availability of each machine is given by the following table.

Product/Machines Chair
(x)
Table
(y)
Available time (hours)
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate and solve the following Linear programming problems using graphical method.


Solve the following problem :

A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through three machines A, B, C The time required in hours by each product and total time available in hours per week on each machine are as follows:

Machine/Product Mixer per unit Food processor per unit Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced to maximize the profit?


Solve the following problem :

A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?


Solve the following problem :

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)


State whether the following statement is True or False:

Corner point method is most suitable method for solving the LPP graphically


State whether the following statement is True or False:

The graphical solution set of the inequations 0 ≤ y, x ≥ 0 lies in second quadrant


A set of values of variables satisfying all the constraints of LPP is known as ______


A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs


Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0


Maximize Z = 400x + 500y subject to constraints

x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0


Minimize Z = 24x + 40y subject to constraints

6x + 8y ≥ 96, 7x + 12y ≥ 168, x ≥ 0, y ≥ 0


Amartya wants to invest ₹ 45,000 in Indira Vikas Patra (IVP) and in Public Provident fund (PPF). He wants to invest at least ₹ 10,000 in PPF and at least ₹ 5000 in IVP. If the rate of interest on PPF is 8% per annum and that on IVP is 7% per annum. Formulate the above problem as LPP to determine maximum yearly income.

Solution: Let x be the amount (in ₹) invested in IVP and y be the amount (in ₹) invested in PPF.

x ≥ 0, y ≥ 0

As per the given condition, x + y ______ 45000

He wants to invest at least ₹ 10,000 in PPF.

∴ y ______ 10000

Amartya wants to invest at least ₹ 5000 in IVP.

∴ x ______ 5000

Total interest (Z) = ______

The formulated LPP is

Maximize Z = ______ subject to 

______


Solve the following LPP graphically:

Maximize Z = 9x + 13y subject to constraints

2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequation Equation X intercept Y intercept Region
2x + 3y ≤ 18 2x + 3y = 18 (9, 0) (0, ___) Towards origin
2x + y ≤ 10 2x + y = 10 ( ___, 0) (0, 10) Towards origin
x ≥ 0, y ≥ 0 x = 0, y = 0 X axis Y axis ______

The feasible region is OAPC, where O(0, 0), A(0, 6),

P( ___, ___ ), C(5, 0)

The optimal solution is in the following table:

Point Coordinates Z = 9x + 13y Values Remark
O (0, 0) 9(0) + 13(0) 0  
A (0, 6) 9(0) + 13(6) ______  
P ( ___,___ ) 9( ___ ) + 13( ___ ) ______ ______
C (5, 0) 9(5) + 13(0) ______  

∴ Z is maximum at __( ___, ___ ) with the value ___.


Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequations Equations X intercept Y intercept Region
5x + y ≥ 10 5x + y = 10 ( ___, 0) (0, 10) Away from origin
x + y ≥ 6 x + y = 6 (6, 0) (0, ___ ) Away from origin
x + 4y ≥ 12 x + 4y = 12 (12, 0) (0, 3) Away from origin
x, y ≥ 0 x = 0, y = 0 x = 0 y = 0 1st quadrant

∵ Origin has not satisfied the inequations.

∴ Solution of the inequations is away from origin.

The feasible region is unbounded area which is satisfied by all constraints.

In the figure, ABCD represents

The set of the feasible solution where

A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).

The coordinates of B are obtained by solving equations

x + 4y = 12 and x + y = 6

The coordinates of C are obtained by solving equations

5x + y = 10 and x + y = 6

Hence the optimum solution lies at the extreme points.

The optimal solution is in the following table:

Point Coordinates Z = 4x + 5y Values Remark
A (12, 0) 4(12) + 5(0) 48  
B ( ___, ___ ) 4( ___) + 5(___ ) ______ ______
C ( ___, ___ ) 4( ___) + 5(___ ) ______  
D (0, 10) 4(0) + 5(10) 50  

∴ Z is minimum at ___ ( ___, ___ ) with the value ___


Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×