मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential compo - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?

आलेख
बेरीज

उत्तर

Let the firm manufacture x units of A and y units of B.
The profit is ₹ 20 per unit of A and ₹ 30 per unit of B.
∴ Total profit = ₹ (20 x + 30 y).
We construct a table with the constraints of number of motors and transformers needed.

Electrical item\Essential component A
(x)
B
(y)
Maximum Supply
Motors 3 2 210
Transformers 2 4 300

From the table, the total motors required is (3x + 2y) and total motor required is (2x + 4y).
But total supply of components per month is restricted to 210 motors and 300 transformers.
∴ The constraints are 3x + 2y ≤ 210 and 2x + 4y ≤ 300.
As x, y cannot be negative, we have x ≤ 0 and y ≥ 0.
Hence the given LPP can be formulated as follows:
Maximize Z = 20x + 30y
Subject to
3x + 2y ≤ 210,
2x + 4y ≤ 300,
x ≤ 0, y ≥ 0.
For graphical solutions of the inequalities, consider lines L1 : 3x + 2y = 210 and 2x + 4y = 300

For L1

x y (x, y)
0 105 (0, 105)
70 0 (70, 0)

For L2

x y (x, y)
0 75 (0, 75)
150 0 (150, 0)

L1 passes through A (0, 105) and B (70, 0)
L2 passes through P (0, 75) and Q (150, 0)
Solving both lines, we get x = 30, y = 60
The coordinates of origin O (0, 0) satisfies both the inequalities.
∴ The required region is on origin side of both the lines L1 and L2.
As x ≥ 0, y ≥ 0; the feasible region lies in the first quadrant.
OBRP is the required feasible region.
At O (0, 0), Z = 0 + 0 = 0
At B (70, 0), Z = 20 (70) + 0 = 1400
At R (30, 60), Z = 20 (30) + 30 (60) = 2400
At P (0, 75), Z = 0 + 30 (75) = 2250
The maximum value of Z is 2400 and it occurs at R (30, 60)
Thus 30 units of A and 60 units of B must be manufactured to get maximum profit of ₹ 2400.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Linear Programming
Miscellaneous Exercise 6 | Q 4.15 | पृष्ठ १०५

संबंधित प्रश्‍न

A company produces two types of goods A and B, that require gold and silver. Each unit of type A requires 3 g of silver and 1 g of golds while that of type B requires 1 g of silver and 2 g of gold. The company can procure a maximum of 9 g of silver and 8 g of gold. If each unit of type A brings a profit of Rs 40 and that of type B Rs 50, formulate LPP to maximize profit.


Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Choose the correct alternative:

The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

A convex set includes the points but not the segment joining the points


State whether the following statement is True or False:

If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12


State whether the following statement is True or False:

If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)


A set of values of variables satisfying all the constraints of LPP is known as ______


The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.


A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.

Resources Dress C(x) Dress D(y) Max. availability
Raw material 5 4 60
Labour 5 3 50

P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Maximize Z = 400x + 500y subject to constraints

x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0


Solve the following LPP graphically:

Maximize Z = 9x + 13y subject to constraints

2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequation Equation X intercept Y intercept Region
2x + 3y ≤ 18 2x + 3y = 18 (9, 0) (0, ___) Towards origin
2x + y ≤ 10 2x + y = 10 ( ___, 0) (0, 10) Towards origin
x ≥ 0, y ≥ 0 x = 0, y = 0 X axis Y axis ______

The feasible region is OAPC, where O(0, 0), A(0, 6),

P( ___, ___ ), C(5, 0)

The optimal solution is in the following table:

Point Coordinates Z = 9x + 13y Values Remark
O (0, 0) 9(0) + 13(0) 0  
A (0, 6) 9(0) + 13(6) ______  
P ( ___,___ ) 9( ___ ) + 13( ___ ) ______ ______
C (5, 0) 9(5) + 13(0) ______  

∴ Z is maximum at __( ___, ___ ) with the value ___.


Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequations Equations X intercept Y intercept Region
5x + y ≥ 10 5x + y = 10 ( ___, 0) (0, 10) Away from origin
x + y ≥ 6 x + y = 6 (6, 0) (0, ___ ) Away from origin
x + 4y ≥ 12 x + 4y = 12 (12, 0) (0, 3) Away from origin
x, y ≥ 0 x = 0, y = 0 x = 0 y = 0 1st quadrant

∵ Origin has not satisfied the inequations.

∴ Solution of the inequations is away from origin.

The feasible region is unbounded area which is satisfied by all constraints.

In the figure, ABCD represents

The set of the feasible solution where

A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).

The coordinates of B are obtained by solving equations

x + 4y = 12 and x + y = 6

The coordinates of C are obtained by solving equations

5x + y = 10 and x + y = 6

Hence the optimum solution lies at the extreme points.

The optimal solution is in the following table:

Point Coordinates Z = 4x + 5y Values Remark
A (12, 0) 4(12) + 5(0) 48  
B ( ___, ___ ) 4( ___) + 5(___ ) ______ ______
C ( ___, ___ ) 4( ___) + 5(___ ) ______  
D (0, 10) 4(0) + 5(10) 50  

∴ Z is minimum at ___ ( ___, ___ ) with the value ___


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×