Advertisements
Advertisements
प्रश्न
A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit
उत्तर
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
From the table, the constraints are
5x + 4y ≤ 60
5x + 3y ≤ 50
∴ Given problem can be formulated as follows:
Maximize P = 50x + 100y
Subject to 5x + 4y ≤ 60
5x + 3y ≤ 50, x ≥ 0, y ≥ 0
To draw the feasible region, construct table as follows:
Inequality | 5x + 4y ≤ 60 | 5x + 3y ≤ 50 |
Corresponding equation (of line) | 5x + 4y = 60 | 5x + 3y = 50 |
Intersection of line with X-axis | (12, 0) | (10, 0) |
Intersection of line with Y-axis | (0, 15) | `(0, 50/3)` |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region whose vertices are O(0, 0), A(10, 0), B and C(0, 15).
B is the point of intersection of 5x + 3y = 50 and 5x + 4y = 60.
Solving the above equations, we get
x = 4, y = 10
∴ B ≡ (4, 10)
Here, the objective function is
P = 50x + 100y
∴ P at O(0, 0) = 50(0) + 100(0) = 0
P at A(10, 0) = 50(10) + 100(0) = 500
P at B(4, 10) = 50(4) + 100(10)
= 200 + 1000
= 1200
P at C(0, 15) = 50(0) + 100(15) = 1500
∴ Maximum value of P is 1500 at x = 0 and y = 15.
APPEARS IN
संबंधित प्रश्न
A company produces two types of goods A and B, that require gold and silver. Each unit of type A requires 3 g of silver and 1 g of golds while that of type B requires 1 g of silver and 2 g of gold. The company can procure a maximum of 9 g of silver and 8 g of gold. If each unit of type A brings a profit of Rs 40 and that of type B Rs 50, formulate LPP to maximize profit.
A small manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry, then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for the production of each unit of A and B, and the number of man-hours the firm has available per week are as follows:
Gadget | Foundry | Machine-shop |
A | 10 | 5 |
B | 6 | 4 |
Firm's capacity per week | 1000 | 600 |
The profit on the sale of A is Rs 30 per unit as compared with Rs 20 per unit of B. The problem is to determine the weekly production of gadgets A and B, so that the total profit is maximized. Formulate this problem as a LPP.
The corner points of the feasible region determined by the following system of linear inequalities:
2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is
Solve the following L.P.P. by graphical method :
Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.
Choose the correct alternative:
The value of objective function is maximize under linear constraints.
Choose the correct alternative :
The maximum value of z = 5x + 3y. subject to the constraints
Choose the correct alternative :
The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is
Fill in the blank :
The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.
The region represented by the inequality y ≤ 0 lies in _______ quadrants.
Solve the following problem :
Maximize Z = 60x + 50y Subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0
Solve the following problem :
A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?
Choose the correct alternative:
The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is
Choose the correct alternative:
The minimum value of Z = 4x + 5y subjected to the constraints x + y ≥ 6, 5x + y ≥ 10, x, y ≥ 0 is
Choose the correct alternative:
The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point
State whether the following statement is True or False:
Corner point method is most suitable method for solving the LPP graphically
State whether the following statement is True or False:
The graphical solution set of the inequations 0 ≤ y, x ≥ 0 lies in second quadrant
If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region
A company manufactures 2 types of goods P and Q that requires copper and brass. Each unit of type P requires 2 grams of brass and 1 gram of copper while one unit of type Q requires 1 gram of brass and 2 grams of copper. The company has only 90 grams of brass and 80 grams of copper. Each unit of types P and Q brings profit of ₹ 400 and ₹ 500 respectively. Find the number of units of each type the company should produce to maximize its profit
Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0
Solution: Convert the constraints into equations and find the intercept made by each one of it.
Inequations | Equations | X intercept | Y intercept | Region |
5x + y ≥ 10 | 5x + y = 10 | ( ___, 0) | (0, 10) | Away from origin |
x + y ≥ 6 | x + y = 6 | (6, 0) | (0, ___ ) | Away from origin |
x + 4y ≥ 12 | x + 4y = 12 | (12, 0) | (0, 3) | Away from origin |
x, y ≥ 0 | x = 0, y = 0 | x = 0 | y = 0 | 1st quadrant |
∵ Origin has not satisfied the inequations.
∴ Solution of the inequations is away from origin.
The feasible region is unbounded area which is satisfied by all constraints.
In the figure, ABCD represents
The set of the feasible solution where
A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).
The coordinates of B are obtained by solving equations
x + 4y = 12 and x + y = 6
The coordinates of C are obtained by solving equations
5x + y = 10 and x + y = 6
Hence the optimum solution lies at the extreme points.
The optimal solution is in the following table:
Point | Coordinates | Z = 4x + 5y | Values | Remark |
A | (12, 0) | 4(12) + 5(0) | 48 | |
B | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | ______ |
C | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | |
D | (0, 10) | 4(0) + 5(10) | 50 |
∴ Z is minimum at ___ ( ___, ___ ) with the value ___