मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Choose the correct alternative : The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative :

The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is

पर्याय

  • (36, 25)

  • (20, 35)

  • (35, 20)

  • (40, 15)

MCQ

उत्तर

Z = x + y
The given inequalities are x + 2y ≤ 70, 2x + y ≤ 95.
Consider lines L1 and L2 where L1 : x + 2y = 70 and L2 : 2x + y = 95.
For line L1, plot A (0, 35) and B (70, 0)
For line L2, plot P (0, 95) and Q (47.5, 0).
Solving both lines we get x = 40, y = 15
The coordinates of origin O (0, 0) satisfies both the inequalities.
∴  The required region is on the origin side of both the lines L1 and L2.
As x ≥ 0, y ≥ 0, the feasible region is in the first quadrant.
OQRAO is the required feasible region.
At O (0, 0), z = 0
At Q (47.5, 0), Z = 47.5 + 0 = 47.5
At R (40, 15), Z = 40 + 15 = 55
At A (0, 35), Z = 0 + 35 = 35.
The maximum value of Z is 55 and it occurs at R (40, 15).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Linear Programming
Miscellaneous Exercise 6 | Q 1.06 | पृष्ठ १०३

संबंधित प्रश्‍न

A farmer has a 100 acre farm. He can sell the tomatoes, lettuce, or radishes he can raise. The price he can obtain is Rs 1 per kilogram for tomatoes, Rs 0.75 a head for lettuce and Rs 2 per kilogram for radishes. The average yield per acre is 2000 kgs for radishes, 3000 heads of lettuce and 1000 kilograms of radishes. Fertilizer is available at Rs 0.50 per kg and the amount required per acre is 100 kgs each for tomatoes and lettuce and 50 kilograms for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labour are available at Rs 20 per man-day. Formulate this problem as a LPP to maximize the farmer's total profit.


Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Choose the correct alternative:

The value of objective function is maximize under linear constraints.


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Solve the following problem :

Maximize Z = 60x + 50y Subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0


A carpenter makes chairs and tables, profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines, Assembling, Finishing and Polishing. The time required for each product in hours and the availability of each machine is given by the following table.

Product/Machines Chair
(x)
Table
(y)
Available time (hours)
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate and solve the following Linear programming problems using graphical method.


Solve the following problem :

A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.

Ingredients per kg. /Chemical Units A
(x)
B
(y)
Minimum requirements in
P 1 2 80
Q 3 1 75
Cost (in ₹) 4 6  

Find the number of units of chemicals A and B should be produced so as to minimize the cost.


Choose the correct alternative:

If LPP has optimal solution at two point, then


Choose the correct alternative:

The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

The graphical solution set of the inequations 0 ≤ y, x ≥ 0 lies in second quadrant


If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region


A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs


Maximize Z = 2x + 3y subject to constraints

x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.


Minimize Z = 24x + 40y subject to constraints

6x + 8y ≥ 96, 7x + 12y ≥ 168, x ≥ 0, y ≥ 0


Graphical solution set of the inequations x ≥ 0 and y ≤ 0 lies in ______ quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×