Advertisements
Advertisements
प्रश्न
Maximize Z = 2x + 3y subject to constraints
x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.
उत्तर
To draw the feasible region, construct table as follows:
Inequality | x + 4y ≤ 8 | 3x + 2y ≤ 14 |
Corresponding equation (of line | x + 4y = 8 | 3x + 2y = 14 |
Intersection of line with X-axis | (8, 0) | `(14/3, 0)` |
Intersection of line with Y-axis | (0, 2) | (0, 7) |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region, whose vertices are O(0, 0), A`(14/3, 0)`, B and C(0, 2).
B is the point of intersection of the lines x + 4y = 8 and 3x + 2y = 14.
Solving the above equations, we get
x = 4, y = 1
∴ B = (4, 1)
Here, the objective function is
Z = 2x + 3y
∴ Z at O(0, 0) = 2(0) + 3(0) = 0
Z at A`(14/3, 0) = 2(14/3) + 3(0) = 28/3`
Z at B(4, 1) = 2(4) + 3(1) = 8 + 3 = 11
Z at C(0, 2) = 2(0) + 3(2) = 6
∴ Z has maximum value 11 at x = 4 and y = 1.
APPEARS IN
संबंधित प्रश्न
The postmaster of a local post office wishes to hire extra helpers during the Deepawali season, because of a large increase in the volume of mail handling and delivery. Because of the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10. According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs 225 a day and a woman receives Rs 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum ? Formulate an LPP and solve it graphically.
A small manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry, then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for the production of each unit of A and B, and the number of man-hours the firm has available per week are as follows:
Gadget | Foundry | Machine-shop |
A | 10 | 5 |
B | 6 | 4 |
Firm's capacity per week | 1000 | 600 |
The profit on the sale of A is Rs 30 per unit as compared with Rs 20 per unit of B. The problem is to determine the weekly production of gadgets A and B, so that the total profit is maximized. Formulate this problem as a LPP.
A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
Product A | Product B | Weekly capacity | |
Department 1 | 3 | 2 | 130 |
Department 2 | 4 | 6 | 260 |
Selling price per unit | ₹ 25 | ₹ 30 | |
Labour cost per unit | ₹ 16 | ₹ 20 | |
Raw material cost per unit | ₹ 4 | ₹ 4 |
The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.
Choose the correct alternative:
The value of objective function is maximize under linear constraints.
Choose the correct alternative :
The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is
Fill in the blank :
The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.
The region represented by the inequality y ≤ 0 lies in _______ quadrants.
The constraint that a factory has to employ more women (y) than men (x) is given by _______
The region represented by the inequalities x ≥ 0, y ≥ 0 lies in first quadrant.
Solve the following problem :
Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0
Solve the following problem :
Maximize Z = 60x + 50y Subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0
Choose the correct alternative:
The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point
State whether the following statement is True or False:
A convex set includes the points but not the segment joining the points
If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region
Maximize Z = 5x + 10y subject to constraints
x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0
Minimize Z = x + 4y subject to constraints
x + 3y ≥ 3, 2x + y ≥ 2, x ≥ 0, y ≥ 0
Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0
Solution: Convert the constraints into equations and find the intercept made by each one of it.
Inequations | Equations | X intercept | Y intercept | Region |
5x + y ≥ 10 | 5x + y = 10 | ( ___, 0) | (0, 10) | Away from origin |
x + y ≥ 6 | x + y = 6 | (6, 0) | (0, ___ ) | Away from origin |
x + 4y ≥ 12 | x + 4y = 12 | (12, 0) | (0, 3) | Away from origin |
x, y ≥ 0 | x = 0, y = 0 | x = 0 | y = 0 | 1st quadrant |
∵ Origin has not satisfied the inequations.
∴ Solution of the inequations is away from origin.
The feasible region is unbounded area which is satisfied by all constraints.
In the figure, ABCD represents
The set of the feasible solution where
A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).
The coordinates of B are obtained by solving equations
x + 4y = 12 and x + y = 6
The coordinates of C are obtained by solving equations
5x + y = 10 and x + y = 6
Hence the optimum solution lies at the extreme points.
The optimal solution is in the following table:
Point | Coordinates | Z = 4x + 5y | Values | Remark |
A | (12, 0) | 4(12) + 5(0) | 48 | |
B | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | ______ |
C | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | |
D | (0, 10) | 4(0) + 5(10) | 50 |
∴ Z is minimum at ___ ( ___, ___ ) with the value ___
A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-
Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.
Graphical solution set of the inequations x ≥ 0 and y ≤ 0 lies in ______ quadrant.