Advertisements
Advertisements
Question
A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit
Solution
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
From the table, the constraints are
5x + 4y ≤ 60
5x + 3y ≤ 50
∴ Given problem can be formulated as follows:
Maximize P = 50x + 100y
Subject to 5x + 4y ≤ 60
5x + 3y ≤ 50, x ≥ 0, y ≥ 0
To draw the feasible region, construct table as follows:
Inequality | 5x + 4y ≤ 60 | 5x + 3y ≤ 50 |
Corresponding equation (of line) | 5x + 4y = 60 | 5x + 3y = 50 |
Intersection of line with X-axis | (12, 0) | (10, 0) |
Intersection of line with Y-axis | (0, 15) | `(0, 50/3)` |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region whose vertices are O(0, 0), A(10, 0), B and C(0, 15).
B is the point of intersection of 5x + 3y = 50 and 5x + 4y = 60.
Solving the above equations, we get
x = 4, y = 10
∴ B ≡ (4, 10)
Here, the objective function is
P = 50x + 100y
∴ P at O(0, 0) = 50(0) + 100(0) = 0
P at A(10, 0) = 50(10) + 100(0) = 500
P at B(4, 10) = 50(4) + 100(10)
= 200 + 1000
= 1200
P at C(0, 15) = 50(0) + 100(15) = 1500
∴ Maximum value of P is 1500 at x = 0 and y = 15.
APPEARS IN
RELATED QUESTIONS
Amit's mathematics teacher has given him three very long lists of problems with the instruction to submit not more than 100 of them (correctly solved) for credit. The problem in the first set are worth 5 points each, those in the second set are worth 4 points each, and those in the third set are worth 6 points each. Amit knows from experience that he requires on the average 3 minutes to solve a 5 point problem, 2 minutes to solve a 4 point problem, and 4 minutes to solve a 6 point problem. Because he has other subjects to worry about, he can not afford to devote more than
Solve the following L.P.P. by graphical method :
Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.
Solve the following L.P.P. by graphical method:
Minimize: Z = 6x + 2y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.
Choose the correct alternative :
The maximum value of z = 5x + 3y. subject to the constraints
Fill in the blank :
The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.
The region represented by the inequalities x ≥ 0, y ≥ 0 lies in first quadrant.
Solve the following problem :
A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?
Choose the correct alternative:
The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is
Choose the correct alternative:
The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point
State whether the following statement is True or False:
The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20
State whether the following statement is True or False:
If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)
The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.
If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region
A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit
Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0
Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.