Advertisements
Advertisements
Question
Solve the following problem :
A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?
Solution
Let x gift items of type A and y gift items of type B be produced by the person.
∴ Total profit Z = 75x + 125y
This is the objective function to be maximized.
The given information can be tabulated as shown below:
Type A (x) | Type B (y) | Total time available (in hours) | |
Cutter | 4 | 2 | 208 |
Finisher | 2 | 4 | 152 |
∴ The constraints are 4x + 2y ≤ 208, 2x + 4y ≤ 152, x ≥ 0, y ≥ 0
∴ Given problem can be formulated as
Maximize Z = 75x + 125y
Subject to, 4x + 2y ≤ 208, 2x + 4y ≤ 152, x ≥ 0, y ≥ 0
To draw feasible region, construct table as follows:
Inequality | 4x + 2y ≤ 208 | 2x + 4y ≤ 152 |
Corresponding equation (of line) | 4x + 2y = 208 | 2x + 4y = 152 |
Intersection of line with X-axis | (52, 0) | (76, 0) |
Intersection of line with Y-axis | (0, 104) | (0, 38) |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region,
whose vertices are O ≡ (0, 0),
A ≡ (52, 0), B and C ≡ (0, 38).
B is the point of intersection of the lines 4x + 2y = 208 i.e. 2x + y = 104 and 2x + 4y = 152
Solving the above equations, we get B ≡ (44, 16)
Here, the objective function is Z = 75x + 125y
∴ Z at O(0, 0) = 75(0) + 125(0) = 0
Z at A(52, 0) = 75(52) + 125(0) = 3900
Z at B(44, 16) = 75(44) + 125(16) = 5300
Z at C(0, 38) = 75(0) + 125(38) = 4750
∴ Z has maximum value 5300 at B(44, 16)
∴ Z is maximum, when x = 44, y = 16
Thus, a person should make 44 gift items of type A and 16 gift items of type B every month to obtain the best returns of ₹ 5300.
APPEARS IN
RELATED QUESTIONS
A firm manufactures 3 products A, B and C. The profits are Rs 3, Rs 2 and Rs 4 respectively. The firm has 2 machines and below is the required processing time in minutes for each machine on each product :
Machine | Products | ||
A | B | C | |
M1 M2 |
4 | 3 | 5 |
2 | 2 | 4 |
Machines M1 and M2 have 2000 and 2500 machine minutes respectively. The firm must manufacture 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up a LPP to maximize the profit.
A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
Product A | Product B | Weekly capacity | |
Department 1 | 3 | 2 | 130 |
Department 2 | 4 | 6 | 260 |
Selling price per unit | ₹ 25 | ₹ 30 | |
Labour cost per unit | ₹ 16 | ₹ 20 | |
Raw material cost per unit | ₹ 4 | ₹ 4 |
The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.
Solve the following LPP by graphical method:
Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0
Solve the following L.P.P. by graphical method :
Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.
Fill in the blank :
The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.
Solve the following problem :
Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0
Solve the following problem :
A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.
Ingredients per kg. /Chemical Units | A (x) |
B (y) |
Minimum requirements in |
P | 1 | 2 | 80 |
Q | 3 | 1 | 75 |
Cost (in ₹) | 4 | 6 |
Find the number of units of chemicals A and B should be produced so as to minimize the cost.
Choose the correct alternative:
The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point
Choose the correct alternative:
The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at
Choose the correct alternative:
The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at
State whether the following statement is True or False:
If LPP has two optimal solutions, then the LPP has infinitely many solutions
State whether the following statement is True or False:
If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12
State whether the following statement is True or False:
Of all the points of feasible region, the optimal value is obtained at the boundary of the feasible region
State whether the following statement is True or False:
The point (6, 4) does not belong to the feasible region bounded by 8x + 5y ≤ 60, 4x + 5y ≤ 40, 0 ≤ x, y
The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.
A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs
Solve the following LPP graphically:
Maximize Z = 9x + 13y subject to constraints
2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0
Solution: Convert the constraints into equations and find the intercept made by each one of it.
Inequation | Equation | X intercept | Y intercept | Region |
2x + 3y ≤ 18 | 2x + 3y = 18 | (9, 0) | (0, ___) | Towards origin |
2x + y ≤ 10 | 2x + y = 10 | ( ___, 0) | (0, 10) | Towards origin |
x ≥ 0, y ≥ 0 | x = 0, y = 0 | X axis | Y axis | ______ |
The feasible region is OAPC, where O(0, 0), A(0, 6),
P( ___, ___ ), C(5, 0)
The optimal solution is in the following table:
Point | Coordinates | Z = 9x + 13y | Values | Remark |
O | (0, 0) | 9(0) + 13(0) | 0 | |
A | (0, 6) | 9(0) + 13(6) | ______ | |
P | ( ___,___ ) | 9( ___ ) + 13( ___ ) | ______ | ______ |
C | (5, 0) | 9(5) + 13(0) | ______ |
∴ Z is maximum at __( ___, ___ ) with the value ___.
Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0
Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.