Advertisements
Advertisements
प्रश्न
Solve the following problem :
A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?
उत्तर
Let x gift items of type A and y gift items of type B be produced by the person.
∴ Total profit Z = 75x + 125y
This is the objective function to be maximized.
The given information can be tabulated as shown below:
Type A (x) | Type B (y) | Total time available (in hours) | |
Cutter | 4 | 2 | 208 |
Finisher | 2 | 4 | 152 |
∴ The constraints are 4x + 2y ≤ 208, 2x + 4y ≤ 152, x ≥ 0, y ≥ 0
∴ Given problem can be formulated as
Maximize Z = 75x + 125y
Subject to, 4x + 2y ≤ 208, 2x + 4y ≤ 152, x ≥ 0, y ≥ 0
To draw feasible region, construct table as follows:
Inequality | 4x + 2y ≤ 208 | 2x + 4y ≤ 152 |
Corresponding equation (of line) | 4x + 2y = 208 | 2x + 4y = 152 |
Intersection of line with X-axis | (52, 0) | (76, 0) |
Intersection of line with Y-axis | (0, 104) | (0, 38) |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region,
whose vertices are O ≡ (0, 0),
A ≡ (52, 0), B and C ≡ (0, 38).
B is the point of intersection of the lines 4x + 2y = 208 i.e. 2x + y = 104 and 2x + 4y = 152
Solving the above equations, we get B ≡ (44, 16)
Here, the objective function is Z = 75x + 125y
∴ Z at O(0, 0) = 75(0) + 125(0) = 0
Z at A(52, 0) = 75(52) + 125(0) = 3900
Z at B(44, 16) = 75(44) + 125(16) = 5300
Z at C(0, 38) = 75(0) + 125(38) = 4750
∴ Z has maximum value 5300 at B(44, 16)
∴ Z is maximum, when x = 44, y = 16
Thus, a person should make 44 gift items of type A and 16 gift items of type B every month to obtain the best returns of ₹ 5300.
APPEARS IN
संबंधित प्रश्न
The postmaster of a local post office wishes to hire extra helpers during the Deepawali season, because of a large increase in the volume of mail handling and delivery. Because of the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10. According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs 225 a day and a woman receives Rs 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum ? Formulate an LPP and solve it graphically.
A small manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry, then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for the production of each unit of A and B, and the number of man-hours the firm has available per week are as follows:
Gadget | Foundry | Machine-shop |
A | 10 | 5 |
B | 6 | 4 |
Firm's capacity per week | 1000 | 600 |
The profit on the sale of A is Rs 30 per unit as compared with Rs 20 per unit of B. The problem is to determine the weekly production of gadgets A and B, so that the total profit is maximized. Formulate this problem as a LPP.
Amit's mathematics teacher has given him three very long lists of problems with the instruction to submit not more than 100 of them (correctly solved) for credit. The problem in the first set are worth 5 points each, those in the second set are worth 4 points each, and those in the third set are worth 6 points each. Amit knows from experience that he requires on the average 3 minutes to solve a 5 point problem, 2 minutes to solve a 4 point problem, and 4 minutes to solve a 6 point problem. Because he has other subjects to worry about, he can not afford to devote more than
A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
Product A | Product B | Weekly capacity | |
Department 1 | 3 | 2 | 130 |
Department 2 | 4 | 6 | 260 |
Selling price per unit | ₹ 25 | ₹ 30 | |
Labour cost per unit | ₹ 16 | ₹ 20 | |
Raw material cost per unit | ₹ 4 | ₹ 4 |
The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.
Solve the following L.P.P. by graphical method :
Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.
The region represented by the inequality y ≤ 0 lies in _______ quadrants.
The constraint that a factory has to employ more women (y) than men (x) is given by _______
The region represented by the inequalities x ≥ 0, y ≥ 0 lies in first quadrant.
State whether the following is True or False :
The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.
Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.
Solve the following problem :
Minimize Z = 2x + 3y Subject to x – y ≤ 1, x + y ≥ 3, x ≥ 0, y ≥ 0
Solve the following problem :
A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.
Ingredients per kg. /Chemical Units | A (x) |
B (y) |
Minimum requirements in |
P | 1 | 2 | 80 |
Q | 3 | 1 | 75 |
Cost (in ₹) | 4 | 6 |
Find the number of units of chemicals A and B should be produced so as to minimize the cost.
Choose the correct alternative:
The corner points of feasible region for the inequations, x + y ≤ 5, x + 2y ≤ 6, x ≥ 0, y ≥ 0 are
Choose the correct alternative:
The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at
State whether the following statement is True or False:
If LPP has two optimal solutions, then the LPP has infinitely many solutions
State whether the following statement is True or False:
If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12
A company manufactures 2 types of goods P and Q that requires copper and brass. Each unit of type P requires 2 grams of brass and 1 gram of copper while one unit of type Q requires 1 gram of brass and 2 grams of copper. The company has only 90 grams of brass and 80 grams of copper. Each unit of types P and Q brings profit of ₹ 400 and ₹ 500 respectively. Find the number of units of each type the company should produce to maximize its profit
Minimize Z = 2x + 3y subject to constraints
x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0
A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-
Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.