English

Choose the correct alternative : The maximum value of z = 5x + 3y. subject to the constraints - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints

Options

  • 235

  • `(235)/(9)`

  • `(235)/(19)`

  • `(235)/(3)`

MCQ

Solution

Z = 5x + 3y
The inequalities are 3x + 5y ≤ 15, 5x + 2y ≤ 10
Consider lines L1 and L2 where
L1 : 3x + 5y = 15, 5x + 2y = 10
For line L1, Plot A (0, 3) and B (5, 0)
For line L2, plot P(0, 5) and Q(2, 0)

Solving both line, we get x = `(20)/(19), y = (45)/(19)`
The coordinates of the origin O (0, 0) satisfies both the inequalities.

∴ The required region is on the origin side of both the lines L1 and L2.
As x ≥ 0, y ≥ 0; the feasible region is in the 1st quadrant.
OQRAO is the required feasible region.
At O (0, 0), Z = 0
At Q (2, 0), Z = 5(2) + 0 = 10

At R `(20/19, 45/19) , z = 5(20/19) + 3(45/19) = (235)/(19)`.

At A (0, 3), Z = 0 + 3(3) = 9

The maximum value of Z is `(235)/(19)` and it occurs at point R`(20/19, 45/19)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Linear Programming - Miscellaneous Exercise 6 [Page 102]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Linear Programming
Miscellaneous Exercise 6 | Q 1.04 | Page 102

RELATED QUESTIONS

A firm manufactures 3 products AB and C. The profits are Rs 3, Rs 2 and Rs 4 respectively. The firm has 2 machines and below is the required processing time in minutes for each machine on each product : 

Machine Products
A B C
M1
M2
4 3 5
2 2 4

Machines M1 and M2 have 2000 and 2500 machine minutes respectively. The firm must manufacture 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up a LPP to maximize the profit.


The corner points of the feasible region determined by the following system of linear inequalities:
2x + y ≤ 10, x + 3y ≤ 15, xy ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is 


Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


The constraint that a factory has to employ more women (y) than men (x) is given by _______


Solve the following problem :

Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0


Solve the following problem :

Minimize Z = 2x + 3y Subject to x – y ≤ 1, x + y ≥ 3, x ≥ 0, y ≥ 0


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Solve the following problem :

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


State whether the following statement is True or False:

Of all the points of feasible region, the optimal value is obtained at the boundary of the feasible region


A set of values of variables satisfying all the constraints of LPP is known as ______


If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs


Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0


Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequations Equations X intercept Y intercept Region
5x + y ≥ 10 5x + y = 10 ( ___, 0) (0, 10) Away from origin
x + y ≥ 6 x + y = 6 (6, 0) (0, ___ ) Away from origin
x + 4y ≥ 12 x + 4y = 12 (12, 0) (0, 3) Away from origin
x, y ≥ 0 x = 0, y = 0 x = 0 y = 0 1st quadrant

∵ Origin has not satisfied the inequations.

∴ Solution of the inequations is away from origin.

The feasible region is unbounded area which is satisfied by all constraints.

In the figure, ABCD represents

The set of the feasible solution where

A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).

The coordinates of B are obtained by solving equations

x + 4y = 12 and x + y = 6

The coordinates of C are obtained by solving equations

5x + y = 10 and x + y = 6

Hence the optimum solution lies at the extreme points.

The optimal solution is in the following table:

Point Coordinates Z = 4x + 5y Values Remark
A (12, 0) 4(12) + 5(0) 48  
B ( ___, ___ ) 4( ___) + 5(___ ) ______ ______
C ( ___, ___ ) 4( ___) + 5(___ ) ______  
D (0, 10) 4(0) + 5(10) 50  

∴ Z is minimum at ___ ( ___, ___ ) with the value ___


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×