हिंदी

Choose the correct alternative : The maximum value of z = 5x + 3y. subject to the constraints - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints

विकल्प

  • 235

  • `(235)/(9)`

  • `(235)/(19)`

  • `(235)/(3)`

MCQ

उत्तर

Z = 5x + 3y
The inequalities are 3x + 5y ≤ 15, 5x + 2y ≤ 10
Consider lines L1 and L2 where
L1 : 3x + 5y = 15, 5x + 2y = 10
For line L1, Plot A (0, 3) and B (5, 0)
For line L2, plot P(0, 5) and Q(2, 0)

Solving both line, we get x = `(20)/(19), y = (45)/(19)`
The coordinates of the origin O (0, 0) satisfies both the inequalities.

∴ The required region is on the origin side of both the lines L1 and L2.
As x ≥ 0, y ≥ 0; the feasible region is in the 1st quadrant.
OQRAO is the required feasible region.
At O (0, 0), Z = 0
At Q (2, 0), Z = 5(2) + 0 = 10

At R `(20/19, 45/19) , z = 5(20/19) + 3(45/19) = (235)/(19)`.

At A (0, 3), Z = 0 + 3(3) = 9

The maximum value of Z is `(235)/(19)` and it occurs at point R`(20/19, 45/19)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Linear Programming
Miscellaneous Exercise 6 | Q 1.04 | पृष्ठ १०२

संबंधित प्रश्न

The postmaster of a local post office wishes to hire extra helpers during the Deepawali season, because of a large increase in the volume of mail handling and delivery. Because of the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10. According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs 225 a day and a woman receives Rs 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum ? Formulate an LPP and solve it graphically.


A small manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry, then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for the production of each unit of and B, and the number of man-hours the firm has available per week are as follows:

Gadget Foundry Machine-shop
A 10 5
B 6 4
 Firm's capacity per week 1000 600

The profit on the sale of A is Rs 30 per unit as compared with Rs 20 per unit of B. The problem is to determine the weekly production of gadgets A and B, so that the total profit is maximized. Formulate this problem as a LPP.

 


 


Amit's mathematics teacher has given him three very long lists of problems with the instruction to submit not more than 100 of them (correctly solved) for credit. The problem in the first set are worth 5 points each, those in the second set are worth 4 points each, and those in the third set are worth 6 points each. Amit knows from experience that he requires on the average 3 minutes to solve a 5 point problem, 2 minutes to solve a 4 point problem, and 4 minutes to solve a 6 point problem. Because he has other subjects to worry about, he can not afford to devote more than

\[3\frac{1}{2}\] hours altogether to his mathematics assignment. Moreover, the first two sets of problems involve numerical calculations and he knows that he cannot stand more than 
\[2\frac{1}{2}\]  hours work on this type of problem. Under these circumstances, how many problems in each of these categories shall he do in order to get maximum possible credit for his efforts? Formulate this as a LPP.

 


Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Solve the following problem :

Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0


Solve the following problem :

Maximize Z = 60x + 50y Subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0


Choose the correct alternative:

If LPP has optimal solution at two point, then


State whether the following statement is True or False:

The point (6, 4) does not belong to the feasible region bounded by 8x + 5y ≤ 60, 4x + 5y ≤ 40, 0 ≤ x, y


The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.


If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region


A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Minimize Z = 24x + 40y subject to constraints

6x + 8y ≥ 96, 7x + 12y ≥ 168, x ≥ 0, y ≥ 0


Solve the following LPP graphically:

Maximize Z = 9x + 13y subject to constraints

2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequation Equation X intercept Y intercept Region
2x + 3y ≤ 18 2x + 3y = 18 (9, 0) (0, ___) Towards origin
2x + y ≤ 10 2x + y = 10 ( ___, 0) (0, 10) Towards origin
x ≥ 0, y ≥ 0 x = 0, y = 0 X axis Y axis ______

The feasible region is OAPC, where O(0, 0), A(0, 6),

P( ___, ___ ), C(5, 0)

The optimal solution is in the following table:

Point Coordinates Z = 9x + 13y Values Remark
O (0, 0) 9(0) + 13(0) 0  
A (0, 6) 9(0) + 13(6) ______  
P ( ___,___ ) 9( ___ ) + 13( ___ ) ______ ______
C (5, 0) 9(5) + 13(0) ______  

∴ Z is maximum at __( ___, ___ ) with the value ___.


A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-


Graphical solution set of the inequations x ≥ 0 and y ≤ 0 lies in ______ quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×