English

Solve the following L.P.P. by graphical method : Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.

Graph

Solution

To draw the feasible region, construct table as follows:

Inequality x + 4y ≤ 24 3x + y ≤ 21 x + y ≤ 9
Corresponding equation (of line) x + 4y = 24 3x + y = 21 x + y = 9
Intersection of line with X-axis (24, 0) (7, 0) (9, 0)
Intersection of line with Y-axis (0, 6) (0, 21) (0, 9)
Region Origin side Origin side Origin side

Shaded portion OABCD is the feasible region,
whose vertices are O (0, 0), A (7, 0), B, C and D (0, 6)
B is the point of intersection of the lines 3x + y = 21 and x + y = 9.
Solving the above equations, we get
x = 6, y = 3
∴ B ≡ (6, 3)
C is the point of intersection of the lines x + 4y = 24
and x + y = 9.
Solving the above equations, we get
x = 4y = 5
∴ C ≡ (4, 5)

Here, the objective function is
Z = 3x + 5y
∴ Z at O(0, 0) = 3(0) + 5(0) = 0
Z at A(7, 0) = 3(7) + 5(0) = 21
Z at B(6, 3) = 3(6) + 5(3)
= 18 + 15 = 33
Z at C(4, 5) = 3(4) + 5(5)
= 12 + 25 = 37
Z at D(0, 6) = 3(0) + 5(6) = 30
∴ Z has maximum value 37 at C(4, 5).
∴ Z is maximum, when x = 4, y = 5.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Linear Programming - Exercise 6.2 [Page 101]

APPEARS IN

RELATED QUESTIONS

A farmer has a 100 acre farm. He can sell the tomatoes, lettuce, or radishes he can raise. The price he can obtain is Rs 1 per kilogram for tomatoes, Rs 0.75 a head for lettuce and Rs 2 per kilogram for radishes. The average yield per acre is 2000 kgs for radishes, 3000 heads of lettuce and 1000 kilograms of radishes. Fertilizer is available at Rs 0.50 per kg and the amount required per acre is 100 kgs each for tomatoes and lettuce and 50 kilograms for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labour are available at Rs 20 per man-day. Formulate this problem as a LPP to maximize the farmer's total profit.


Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Fill in the blank :

The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.


The region represented by the inequality y ≤ 0 lies in _______ quadrants.


Solve the following problem :

A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.

Ingredients per kg. /Chemical Units A
(x)
B
(y)
Minimum requirements in
P 1 2 80
Q 3 1 75
Cost (in ₹) 4 6  

Find the number of units of chemicals A and B should be produced so as to minimize the cost.


Solve the following problem :

A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?


Choose the correct alternative:

The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The corner points of feasible region for the inequations, x + y ≤ 5, x + 2y ≤ 6, x ≥ 0, y ≥ 0 are


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


State whether the following statement is True or False:

A convex set includes the points but not the segment joining the points


State whether the following statement is True or False:

If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12


State whether the following statement is True or False:

If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)


A set of values of variables satisfying all the constraints of LPP is known as ______


The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Minimize Z = 2x + 3y subject to constraints

x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0


A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-


Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×