English

State whether the following statement is True or False: If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0) - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following statement is True or False:

If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)

Options

  • True

  • False

MCQ
True or False

Solution

False

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.6: Linear Programming - Q.2 (B)

RELATED QUESTIONS

Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Solve the following problem :

Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Solve the following problem :

A company manufactures bicyles and tricycles, each of which must be processed through two machines A and B Maximum availability of machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B. If profits are ₹ 180 for a bicycle and ₹ 220 on a tricycle, determine the number of bicycles and tricycles that should be manufacturing in order to maximize the profit.


Solve the following problem :

A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.

Ingredients per kg. /Chemical Units A
(x)
B
(y)
Minimum requirements in
P 1 2 80
Q 3 1 75
Cost (in ₹) 4 6  

Find the number of units of chemicals A and B should be produced so as to minimize the cost.


Choose the correct alternative:

If LPP has optimal solution at two point, then


Choose the correct alternative:

The corner points of feasible region for the inequations, x + y ≤ 5, x + 2y ≤ 6, x ≥ 0, y ≥ 0 are


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


State whether the following statement is True or False:

The point (6, 4) does not belong to the feasible region bounded by 8x + 5y ≤ 60, 4x + 5y ≤ 40, 0 ≤ x, y


State whether the following statement is True or False:

The graphical solution set of the inequations 0 ≤ y, x ≥ 0 lies in second quadrant


A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit


A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.

Resources Dress C(x) Dress D(y) Max. availability
Raw material 5 4 60
Labour 5 3 50

P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit


Maximize Z = 2x + 3y subject to constraints

x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.


Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0


Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0


If z = 200x + 500y  .....(i)

Subject to the constraints:

x + 2y ≥ 10  .......(ii)

3x + 4y ≤ 24  ......(iii)

x, 0, y ≥ 0  ......(iv)

At which point minimum value of Z is attained.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×