Advertisements
Advertisements
Question
Solve the following L.P.P. by graphical method:
Minimize: Z = 6x + 2y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.
Solution
To draw the feasible region, construct the table as follows:
Equation of line | Intercepts | Constraint Type | Feasible region |
x + 2y = 3 | x = 3, y = `3/2` | ≥ | Non-origin side |
x + 4y = 4 | x = 4, y = 1 | ≥ | Non-origin side |
3x + y = 3 | x = 1, y = 3 | ≥ | Non-origin side |
Pis point of intersection of the lines x + 2 y = 3 and x + 4y = 4.
Solving this equation, we will get x = 2, y = `1/2`
∴ P = `(2, 1/2)`
Q is the point of intersection of the lines x + 2 y = 3 and 3x + y = 3.
Solving this equation, we will get `x = 3/5, y = 6/5`
∴ Q = `(3/5, 6/5)`
The common shaded region is feasible region with boundary points C(4, 0), P`(2, 1/2)`
Q = `(3/5, 6/5)` and F(0,3).
Substitute these points in z = 6x + 2y
Points | Value of z = 6x + 2y |
C(4, 0) | ZC = 6(4) + 2(0) = 24 |
P`(2, 1/2)` | ZP = `6(2) + 2(1/2) = 13` |
Q = `(3/5, 6/5)` | ZQ = `6(3/5) + 2(6/5) = 6` |
F(0,3) | ZF = 6(0) + 2(3) = 6 |
From the above tabulation, Z is minimum at two points Q and F.
∴ Zmin = 6 at `"Q"(3/5, 6/5)` and F(0,3).
∴ The L.P.P. has infinitely many solutions.
RELATED QUESTIONS
Solve the following LPP by graphical method:
Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0
Solve the following L.P.P. by graphical method :
Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.
The region represented by the inequality y ≤ 0 lies in _______ quadrants.
The constraint that a factory has to employ more women (y) than men (x) is given by _______
State whether the following is True or False :
The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.
Solve the following problem :
Maximize Z = 5x1 + 6x2 Subject to 2x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 12, x ≥ 0, x2 ≥ 0
Solve the following problem :
Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0
Solve the following problem :
A company manufactures bicyles and tricycles, each of which must be processed through two machines A and B Maximum availability of machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B. If profits are ₹ 180 for a bicycle and ₹ 220 on a tricycle, determine the number of bicycles and tricycles that should be manufacturing in order to maximize the profit.
Solve the following problem :
A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through three machines A, B, C The time required in hours by each product and total time available in hours per week on each machine are as follows:
Machine/Product | Mixer per unit | Food processor per unit | Available time |
A | 3 | 3 | 36 |
B | 5 | 2 | 50 |
C | 2 | 6 | 60 |
How many mixers and food processors should be produced to maximize the profit?
Solve the following problem :
A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?
Choose the correct alternative:
The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is
Choose the correct alternative:
The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at
State whether the following statement is True or False:
If LPP has two optimal solutions, then the LPP has infinitely many solutions
State whether the following statement is True or False:
If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)
A set of values of variables satisfying all the constraints of LPP is known as ______
A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit
A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit
A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs
Maximize Z = 2x + 3y subject to constraints
x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.
Maximize Z = 400x + 500y subject to constraints
x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0
Minimize Z = x + 4y subject to constraints
x + 3y ≥ 3, 2x + y ≥ 2, x ≥ 0, y ≥ 0
Minimize Z = 2x + 3y subject to constraints
x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0
Solve the LPP graphically:
Minimize Z = 4x + 5y
Subject to the constraints 5x + y ≥ 10, x + y ≥ 6, x + 4y ≥ 12, x, y ≥ 0
Solution: Convert the constraints into equations and find the intercept made by each one of it.
Inequations | Equations | X intercept | Y intercept | Region |
5x + y ≥ 10 | 5x + y = 10 | ( ___, 0) | (0, 10) | Away from origin |
x + y ≥ 6 | x + y = 6 | (6, 0) | (0, ___ ) | Away from origin |
x + 4y ≥ 12 | x + 4y = 12 | (12, 0) | (0, 3) | Away from origin |
x, y ≥ 0 | x = 0, y = 0 | x = 0 | y = 0 | 1st quadrant |
∵ Origin has not satisfied the inequations.
∴ Solution of the inequations is away from origin.
The feasible region is unbounded area which is satisfied by all constraints.
In the figure, ABCD represents
The set of the feasible solution where
A(12, 0), B( ___, ___ ), C ( ___, ___ ) and D(0, 10).
The coordinates of B are obtained by solving equations
x + 4y = 12 and x + y = 6
The coordinates of C are obtained by solving equations
5x + y = 10 and x + y = 6
Hence the optimum solution lies at the extreme points.
The optimal solution is in the following table:
Point | Coordinates | Z = 4x + 5y | Values | Remark |
A | (12, 0) | 4(12) + 5(0) | 48 | |
B | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | ______ |
C | ( ___, ___ ) | 4( ___) + 5(___ ) | ______ | |
D | (0, 10) | 4(0) + 5(10) | 50 |
∴ Z is minimum at ___ ( ___, ___ ) with the value ___
Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0