English

Solve the following problem : A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through three machines A, B, C The time required in hours by each product and total time available in hours per week on each machine are as follows:

Machine/Product Mixer per unit Food processor per unit Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced to maximize the profit?

Graph
Sum

Solution

Let x mixers and y food processors be produced by the company.
∴ Total profit Z = 2000x + 3000y
This is the objective function to be maximized.
From the given information, the constraints are
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0
∴ Given problem can be formulated as
Maximize Z = 2000x + 3000y
Subject to, 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0
To draw the feasible region, construct table as follows:

Inequality 3x + 3y ≤ 36 5x + 2y ≤50 2x + 6y ≤ 60 
Corresponding equation (of line) 3x + 3y = 36 5x + 2y = 50 2x + 6y = 60
Intersection of line with X-axis (12, 0) (10, 0) (30, 0)
Intersection of line with Y-axis (0, 12) (0, 25) (0, 10)
Region Origin side Origin side Origin side

Shaded portion OABCD is the feasible region,
whose vertices are O ≡ (0, 0), A ≡ (10, 0), B, C and D ≡ (0, 10)
B is the point of intersection of the lines
3x + 3y = 36 i.e. x + y = 12 and 5x + 2y = 50
Solving the above equations, we get
B ≡ `(26/3, 10/3)`
C is the point of intersection of the lines 3x + 3y = 36
i.e. x + y = 12 and 2x + 6y = 60
i.e. x + 3y = 30
Solving the above equations, we get
C ≡ (3, 9)
Here the objective function is
Z = 2000x + 3000y
∴ Z at O(0, 0) = 2000(0) + 3000(0) = 0
Z at A(10, 0) = 2000(10) + 3000(0) = 20000
Z at B`(26/3, 10/3) = 2000(26/3) + 3000(10/3) = (82000)/(3)` = 27333.33
Z at C(3, 9) = 2000(3) + 3000(9) = 33000
Z at D(0, 10) = 2000(0) + 3000(10) = 30000
∴ Z has maximum value 33000 at C(3, 9).
∴ Z is maximum when x = 3, y = 9

Thus, the company should produce 3 mixers and 9 food processors to gain maximum profit of ₹ 33000.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Linear Programming - Miscellaneous Exercise 6 [Page 105]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Linear Programming
Miscellaneous Exercise 6 | Q 4.11 | Page 105

RELATED QUESTIONS

The corner points of the feasible region determined by the following system of linear inequalities:
2x + y ≤ 10, x + 3y ≤ 15, xy ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is 


Solve the following L.P.P. by graphical method:

Maximize: Z = 10x + 25y
subject to 0 ≤ x ≤ 3,
0 ≤ y ≤ 3,
x + y ≤ 5.
Also find the maximum value of z.


Choose the correct alternative:

The value of objective function is maximize under linear constraints.


Choose the correct alternative :

The maximum value of z = 5x + 3y. subject to the constraints


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Choose the correct alternative :

The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is


Fill in the blank :

Graphical solution set of the in equations x ≥ 0, y ≥ 0 is in _______ quadrant


The region represented by the inequalities x ≥ 0, y ≥ 0 lies in first quadrant.


Solve the following problem :

Minimize Z = 2x + 3y Subject to x – y ≤ 1, x + y ≥ 3, x ≥ 0, y ≥ 0


Solve the following problem :

A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?


Choose the correct alternative:

The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is


Choose the correct alternative:

The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12


State whether the following statement is True or False:

Corner point method is most suitable method for solving the LPP graphically


A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit


Maximize Z = 2x + 3y subject to constraints

x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.


Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0


Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×