हिंदी

Solve the following problem : A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A Company produces mixers and processors Profit on selling one mixer and one food processor is ₹ 2000 and ₹ 3000 respectively. Both the products are processed through three machines A, B, C The time required in hours by each product and total time available in hours per week on each machine are as follows:

Machine/Product Mixer per unit Food processor per unit Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced to maximize the profit?

आलेख
योग

उत्तर

Let x mixers and y food processors be produced by the company.
∴ Total profit Z = 2000x + 3000y
This is the objective function to be maximized.
From the given information, the constraints are
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0
∴ Given problem can be formulated as
Maximize Z = 2000x + 3000y
Subject to, 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0
To draw the feasible region, construct table as follows:

Inequality 3x + 3y ≤ 36 5x + 2y ≤50 2x + 6y ≤ 60 
Corresponding equation (of line) 3x + 3y = 36 5x + 2y = 50 2x + 6y = 60
Intersection of line with X-axis (12, 0) (10, 0) (30, 0)
Intersection of line with Y-axis (0, 12) (0, 25) (0, 10)
Region Origin side Origin side Origin side

Shaded portion OABCD is the feasible region,
whose vertices are O ≡ (0, 0), A ≡ (10, 0), B, C and D ≡ (0, 10)
B is the point of intersection of the lines
3x + 3y = 36 i.e. x + y = 12 and 5x + 2y = 50
Solving the above equations, we get
B ≡ `(26/3, 10/3)`
C is the point of intersection of the lines 3x + 3y = 36
i.e. x + y = 12 and 2x + 6y = 60
i.e. x + 3y = 30
Solving the above equations, we get
C ≡ (3, 9)
Here the objective function is
Z = 2000x + 3000y
∴ Z at O(0, 0) = 2000(0) + 3000(0) = 0
Z at A(10, 0) = 2000(10) + 3000(0) = 20000
Z at B`(26/3, 10/3) = 2000(26/3) + 3000(10/3) = (82000)/(3)` = 27333.33
Z at C(3, 9) = 2000(3) + 3000(9) = 33000
Z at D(0, 10) = 2000(0) + 3000(10) = 30000
∴ Z has maximum value 33000 at C(3, 9).
∴ Z is maximum when x = 3, y = 9

Thus, the company should produce 3 mixers and 9 food processors to gain maximum profit of ₹ 33000.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Linear Programming
Miscellaneous Exercise 6 | Q 4.11 | पृष्ठ १०५

संबंधित प्रश्न

A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit ₹ 25 ₹ 30  
Labour cost per unit ₹ 16 ₹ 20  
Raw material cost per unit ₹ 4 ₹ 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Fill in the blank :

Graphical solution set of the in equations x ≥ 0, y ≥ 0 is in _______ quadrant


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Choose the correct alternative:

The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

If LPP has two optimal solutions, then the LPP has infinitely many solutions


State whether the following statement is True or False:

A convex set includes the points but not the segment joining the points


State whether the following statement is True or False:

Of all the points of feasible region, the optimal value is obtained at the boundary of the feasible region


The feasible region represented by the inequations x ≥ 0, y ≤ 0 lies in ______ quadrant.


A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit


A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.

Resources Dress C(x) Dress D(y) Max. availability
Raw material 5 4 60
Labour 5 3 50

P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Maximize Z = 2x + 3y subject to constraints

x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.


Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0


Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0


Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×