हिंदी

Maximize Z = 5x + 10y subject to constraints x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Maximize Z = 5x + 10y subject to constraints

x + 2y ≤ 10, 3x + y ≤ 12, x ≥ 0, y ≥ 0

सारिणी
आकृति

उत्तर

To draw the feasible region, construct table as follows:

Inequality x + 2y ≤ 10 3x + y ≤ 12
Corresponding equation (of line) x + 2y = 10 3x + y = 12
Intersection of line with X-axis (10, 0) (4, 0)
Intersection of line with Y-axis (0, 5) (0, 12)
Region Origin side Origin side

Shaded portion OABC is the feasible region, whose vertices are O(0, 0), A(4, 0), B and C(0, 5).

B is the point of intersection of the lines x + 2y = 10 and 3x + y = 12.

Solving the above equations, we get

x = `14/5` y = `18/5`

Here, the objective function is

Z = 5x + 10y

∴ Z at O(0, 0) = 5(0) + 10(0)

= 0

Z at A(4, 0) = 5(4) + 10(0)

= 20

Z at B`(14/5, 18/5) = 5(14/5) + 10(18/5)`

= 14 + 36

= 50

Z at C(0, 5) = 5(0) + 10(5)

= 50

The maximum value of Z is 50 and it occurs at every point lying on the line segment joining B`(14/5, 18/5)` and C(0, 5).

Hence, there are infinitely many optimal solutions.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.6: Linear Programming - Q.4 (D)

संबंधित प्रश्न

Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Choose the correct alternative :

The maximum value of z = 10x + 6y, subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y ≥ 0 is.


Choose the correct alternative :

The point at which the maximum value of z = x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is


Fill in the blank :

The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.


The region represented by the inequality y ≤ 0 lies in _______ quadrants.


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


A carpenter makes chairs and tables, profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines, Assembling, Finishing and Polishing. The time required for each product in hours and the availability of each machine is given by the following table.

Product/Machines Chair
(x)
Table
(y)
Available time (hours)
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate and solve the following Linear programming problems using graphical method.


Solve the following problem :

A person makes two types of gift items A and B requiring the services of a cutter and a finisher. Gift item A requires 4 hours of cutter's time and 2 hours of finisher's time. B requires 2 hours of cutters time, 4 hours of finishers time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75 and on gift item B is ₹ 125. Assuming that the person can sell all the items produced, determine how many gift items of each type should be make every month to obtain the best returns?


Choose the correct alternative:

The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

The point (6, 4) does not belong to the feasible region bounded by 8x + 5y ≤ 60, 4x + 5y ≤ 40, 0 ≤ x, y


A set of values of variables satisfying all the constraints of LPP is known as ______


A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.

Resources Dress C(x) Dress D(y) Max. availability
Raw material 5 4 60
Labour 5 3 50

P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Minimize Z = x + 4y subject to constraints

x + 3y ≥ 3, 2x + y ≥ 2, x ≥ 0, y ≥ 0


Minimize Z = 2x + 3y subject to constraints

x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0


A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×