हिंदी

A carpenter makes chairs and tables profits are ₹ 140 per chair and ₹ 210 per table Both products are processed on three machines, Assembling, Finishing and Polishing the time required for each produ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A carpenter makes chairs and tables, profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines, Assembling, Finishing and Polishing. The time required for each product in hours and the availability of each machine is given by the following table.

Product/Machines Chair
(x)
Table
(y)
Available time (hours)
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate and solve the following Linear programming problems using graphical method.

आलेख
योग

उत्तर

Let x be the number of chairs and y be the number of tables.

∴ The constraints are

3x + 3y ≤ 36

5x + 2y ≤ 50

2x + 6y ≤ 60

Since x and y are the numbers of chairs and tables, respectively.

∴ They cannot be negative.

∴ x ≥ 0, y ≥ 0

Now, the profit for one chair is ₹ 140 and the profit for one table is ₹ 210

∴ Total profit (Z) = 140x + 210y

This is an objective function to be maximized

∴ The given problem can be formulated as

Maximize Z = 140x + 210y

Subject to 3x + 3y ≤ 36

5x + 2y ≤ 50

2x + 6y ≤ 60

x ≥ 0, y ≥ 0

To find the graphical solution, construct the table as follows:

Inequation Equation Double intercept form Points (x, y) Region
3x + 3y ≤ 36 3x + 3y = 36 `x/(2) + y/(12)` = 1 A (12, 0)
B (0, 12)
3(0) + 3(0) ≤ 36
∴ (0) ≤ 36
∴ Origin-side
5x + 2y ≤ 50 5x + 2y = 50 `x/(10) + y/(25)` = 1 C 10, 0)
D (0, 25)
5(0) + 2(0) ≤ 50
∴ 0 ≤ 50
∴ Origin-side
2x + 6y ≤60 2x + 6y = 60 `x/(30) + y/(10)` = 1 E (30, 0)
F (0, 10
2(0) + 6(0) ≤ 60
∴ 0 ≤ 60
∴ Origin-side
x ≥ 0 x = 0 R.H.S. of Y-axis
y ≥ 0 y = 0 above X-axis

The shaded portion OFG HC is the feasible region,

Whose vertices are O (0, 0), F (0, 10), G, H and C (10, 0)

G is the point of intersection of lines.

2x + 6y = 60

i.e., x + 3y = 30      …(i)

and 3x + 3y = 36

i.e., x + y = 12       …(ii)

∴ By (i) – (ii), we get

x + 3y = 30
x +   y = 12
–     –       –   
      2y = 18

∴ y = 9

Substituting y = 9 in (ii), we get

x + 9 = 12

∴ x = 12 – 9

∴ x = 3

∴ G = (3, 9)

H is the point of intersection of lines.

3x + 3y = 36

i.e., x + y = 12       …(ii)

5x + 2y = 50         …(iii)

∴ By 2 x (ii) – (iii), we get

 2x + 2y = 24
 5x + 2y = 50
 –      –      –    
– 3x        – 26

∴ x = `(26)/(3)`

Substituting x = `(26)/(3)` in (ii), we get

`(26)/(3) + y` = 12

∴ y = `12 - (26)/(3) = (36 - 26)/(3)`

∴ y = `(10)/(3)`

∴ H`(26/3, 10/3)`

Here, the objective function is Z = 140x + 210y

Now, we will find the maximum value of Z as follows:

Feasible Points The value of Z = 140x + 210y
O (0, 0) Z = 140(0) + 210(0) = 0
F (0, 10) Z = 140(0) + 210(10) = 2100
G (3, 9) Z = 140(3) + 210(9) = 420 + 1890 = 2310
H`(36/3, 10/3)` Z = `140(26/3) + 210(10/3) = (3640)/(3) + (2100)/(3)` = 1913.33
C (10, 0) Z = 140(10) + 210(0) = 1400

∴ Z has a maximum value of 2310 at G (3, 9)

∴ Maximum profit is ₹ 2310, when x = number of chairs = 3, y = number of tables = 9.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Linear Programming
Miscellaneous Exercise 6 | Q 4.08 | पृष्ठ १०४

संबंधित प्रश्न

The postmaster of a local post office wishes to hire extra helpers during the Deepawali season, because of a large increase in the volume of mail handling and delivery. Because of the limited office space and the budgetary conditions, the number of temporary helpers must not exceed 10. According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives Rs 225 a day and a woman receives Rs 200 a day. How many men and women helpers should be hired to keep the pay-roll at a minimum ? Formulate an LPP and solve it graphically.


A firm manufactures 3 products AB and C. The profits are Rs 3, Rs 2 and Rs 4 respectively. The firm has 2 machines and below is the required processing time in minutes for each machine on each product : 

Machine Products
A B C
M1
M2
4 3 5
2 2 4

Machines M1 and M2 have 2000 and 2500 machine minutes respectively. The firm must manufacture 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up a LPP to maximize the profit.


Choose the correct alternative:

The value of objective function is maximize under linear constraints.


Fill in the blank :

Graphical solution set of the in equations x ≥ 0, y ≥ 0 is in _______ quadrant


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Solve the following problem :

Maximize Z = 5x1 + 6x2 Subject to 2x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 12, x ≥ 0, x2 ≥ 0


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Choose the correct alternative:

The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12


State whether the following statement is True or False:

If the corner points of the feasible region are (0, 10), (2, 2) and (4, 0), then the minimum value of Z = 3x + 2y is at (4, 0)


If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region


A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit


Smita is a diet conscious house wife, wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily needs of vitamins A, B, and C for the family are 30, 20, and 16 units respectively. For the supply of the minimum vitamin requirements Smita relies on 2 types of foods F1 and F2. F1 provides 7, 5 and 2 units of A, B, C vitamins per 10 grams and F2 provides 2, 4 and 8 units of A, B and C vitamins per 10 grams. F1 costs ₹ 3 and F2 costs ₹ 2 per 10 grams. How many grams of each F1 and F2 should buy every day to keep her food bill minimum


Minimize Z = 2x + 3y subject to constraints

x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0


Amartya wants to invest ₹ 45,000 in Indira Vikas Patra (IVP) and in Public Provident fund (PPF). He wants to invest at least ₹ 10,000 in PPF and at least ₹ 5000 in IVP. If the rate of interest on PPF is 8% per annum and that on IVP is 7% per annum. Formulate the above problem as LPP to determine maximum yearly income.

Solution: Let x be the amount (in ₹) invested in IVP and y be the amount (in ₹) invested in PPF.

x ≥ 0, y ≥ 0

As per the given condition, x + y ______ 45000

He wants to invest at least ₹ 10,000 in PPF.

∴ y ______ 10000

Amartya wants to invest at least ₹ 5000 in IVP.

∴ x ______ 5000

Total interest (Z) = ______

The formulated LPP is

Maximize Z = ______ subject to 

______


A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×