Advertisements
Advertisements
प्रश्न
Maximize Z = 400x + 500y subject to constraints
x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0
उत्तर
To draw the feasible region, construct table as follows:
Inequality | x + 2y ≤ 80 | 2x + y ≤ 90 |
Corresponding equation (of line) | x + 2y = 80 | 2x + y = 90 |
Intersection of line with X-axis | (80, 0) | (45, 0) |
Intersection of line with Y-axis | (0, 40) | (0, 90) |
Region | Origin side | Origin side |
Shaded portion OABC is the feasible region, whose vertices are O(0, 0), A(45, 0), B and C(0, 40).
B is the point of intersection of the lines 2x + y = 90 and x + 2y = 80.
Solving the above equations, we get
x = `100/3`, y = `70/3`
∴ B = `(100/3, 70/3)`
Here, the objective function is
Z = 400x + 500y
∴ Z at O(0, 0) = 400(0) + 500(0) = 0
Z at A(45, 0) = 400(45) + 500(0) = 18000
X at B`(100/3, 70/3) = 400(100/3) + 500(70/3)`
= `40000/3 + 35000/3`
= `75000/3`
= 25000
Z at C(0, 40) = 400(0) + 500(40)
= 20000
∴ Z has maximum value 25000 at x = `100/3` and y = `70/3`.
APPEARS IN
संबंधित प्रश्न
Amit's mathematics teacher has given him three very long lists of problems with the instruction to submit not more than 100 of them (correctly solved) for credit. The problem in the first set are worth 5 points each, those in the second set are worth 4 points each, and those in the third set are worth 6 points each. Amit knows from experience that he requires on the average 3 minutes to solve a 5 point problem, 2 minutes to solve a 4 point problem, and 4 minutes to solve a 6 point problem. Because he has other subjects to worry about, he can not afford to devote more than
Solve the following LPP by graphical method:
Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0
Solve the following L.P.P. by graphical method:
Minimize: Z = 6x + 2y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.
Fill in the blank :
Graphical solution set of the in equations x ≥ 0, y ≥ 0 is in _______ quadrant
State whether the following is True or False :
The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.
Solve the following problem :
A factory produced two types of chemicals A and B The following table gives the units of ingredients P & Q (per kg) of Chemicals A and B as well as minimum requirements of P and Q and also cost per kg. of chemicals A and B.
Ingredients per kg. /Chemical Units | A (x) |
B (y) |
Minimum requirements in |
P | 1 | 2 | 80 |
Q | 3 | 1 | 75 |
Cost (in ₹) | 4 | 6 |
Find the number of units of chemicals A and B should be produced so as to minimize the cost.
Choose the correct alternative:
The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point
Choose the correct alternative:
The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at
State whether the following statement is True or False:
If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12
A set of values of variables satisfying all the constraints of LPP is known as ______
If the feasible region is bounded by the inequations 2x + 3y ≤ 12, 2x + y ≤ 8, 0 ≤ x, 0 ≤ y, then point (5, 4) is a ______ of the feasible region
A dealer deals in two products X and Y. He has ₹ 1,00,000/- to invest and space to store 80 pieces. Product X costs ₹ 2500/- and product Y costs ₹ 1000/- per unit. He can sell the items X and Y at respective profits of ₹ 300 and ₹ 90. Construct the LPP and find the number of units of each product to be purchased to maximize its profit
A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.
Resources | Dress C(x) | Dress D(y) | Max. availability |
Raw material | 5 | 4 | 60 |
Labour | 5 | 3 | 50 |
P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit
A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost
Maximize Z = 2x + 3y subject to constraints
x + 4y ≤ 8, 3x + 2y ≤ 14, x ≥ 0, y ≥ 0.
Solve the following LPP graphically:
Maximize Z = 9x + 13y subject to constraints
2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0
Solution: Convert the constraints into equations and find the intercept made by each one of it.
Inequation | Equation | X intercept | Y intercept | Region |
2x + 3y ≤ 18 | 2x + 3y = 18 | (9, 0) | (0, ___) | Towards origin |
2x + y ≤ 10 | 2x + y = 10 | ( ___, 0) | (0, 10) | Towards origin |
x ≥ 0, y ≥ 0 | x = 0, y = 0 | X axis | Y axis | ______ |
The feasible region is OAPC, where O(0, 0), A(0, 6),
P( ___, ___ ), C(5, 0)
The optimal solution is in the following table:
Point | Coordinates | Z = 9x + 13y | Values | Remark |
O | (0, 0) | 9(0) + 13(0) | 0 | |
A | (0, 6) | 9(0) + 13(6) | ______ | |
P | ( ___,___ ) | 9( ___ ) + 13( ___ ) | ______ | ______ |
C | (5, 0) | 9(5) + 13(0) | ______ |
∴ Z is maximum at __( ___, ___ ) with the value ___.
Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0