English

Maximize Z = 400x + 500y subject to constraints x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Maximize Z = 400x + 500y subject to constraints

x + 2y ≤ 80, 2x + y ≤ 90, x ≥ 0, y ≥ 0

Chart
Diagram

Solution

To draw the feasible region, construct table as follows:

Inequality x + 2y ≤ 80 2x + y ≤ 90
Corresponding equation (of line) x + 2y = 80 2x + y = 90
Intersection of line with X-axis (80, 0) (45, 0)
Intersection of line with Y-axis (0, 40) (0, 90)
Region Origin side Origin side

Shaded portion OABC is the feasible region, whose vertices are O(0, 0), A(45, 0), B and C(0, 40).

B is the point of intersection of the lines 2x + y = 90 and x + 2y = 80.

Solving the above equations, we get

x = `100/3`, y = `70/3`

∴ B = `(100/3, 70/3)`

Here, the objective function is

Z = 400x + 500y

∴ Z at O(0, 0) = 400(0) + 500(0) = 0

Z at A(45, 0) = 400(45) + 500(0) = 18000

X at B`(100/3, 70/3) = 400(100/3) + 500(70/3)`

= `40000/3 + 35000/3`

= `75000/3`

= 25000

Z at C(0, 40) = 400(0) + 500(40)

= 20000

∴ Z has maximum value 25000 at x = `100/3` and y = `70/3`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.6: Linear Programming - Q.4 (D)

RELATED QUESTIONS

Solve the following L.P.P. by graphical method:

Maximize: Z = 10x + 25y
subject to 0 ≤ x ≤ 3,
0 ≤ y ≤ 3,
x + y ≤ 5.
Also find the maximum value of z.


Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.


Solve the following L.P.P. by graphical method :

Minimize : Z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method:

Minimize: Z = 6x + 2y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.


Choose the correct alternative:

The value of objective function is maximize under linear constraints.


The region represented by the inequality y ≤ 0 lies in _______ quadrants.


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


A carpenter makes chairs and tables, profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines, Assembling, Finishing and Polishing. The time required for each product in hours and the availability of each machine is given by the following table.

Product/Machines Chair
(x)
Table
(y)
Available time (hours)
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate and solve the following Linear programming problems using graphical method.


Choose the correct alternative:

The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

If LPP has two optimal solutions, then the LPP has infinitely many solutions


State whether the following statement is True or False:

If the corner points of the feasible region are `(0, 7/3)`, (2, 1), (3, 0) and (0, 0), then the maximum value of Z = 4x + 5y is 12


State whether the following statement is True or False:

The point (6, 4) does not belong to the feasible region bounded by 8x + 5y ≤ 60, 4x + 5y ≤ 40, 0 ≤ x, y


A company manufactures two types of ladies dresses C and D. The raw material and labour available per day is given in the table.

Resources Dress C(x) Dress D(y) Max. availability
Raw material 5 4 60
Labour 5 3 50

P is the profit, if P = 50x + 100y, solve this LPP to find x and y to get the maximum profit


Minimize Z = 2x + 3y subject to constraints

x + y ≥ 6, 2x + y ≥ 7, x + 4y ≥ 8, x ≥ 0, y ≥ 0


Amartya wants to invest ₹ 45,000 in Indira Vikas Patra (IVP) and in Public Provident fund (PPF). He wants to invest at least ₹ 10,000 in PPF and at least ₹ 5000 in IVP. If the rate of interest on PPF is 8% per annum and that on IVP is 7% per annum. Formulate the above problem as LPP to determine maximum yearly income.

Solution: Let x be the amount (in ₹) invested in IVP and y be the amount (in ₹) invested in PPF.

x ≥ 0, y ≥ 0

As per the given condition, x + y ______ 45000

He wants to invest at least ₹ 10,000 in PPF.

∴ y ______ 10000

Amartya wants to invest at least ₹ 5000 in IVP.

∴ x ______ 5000

Total interest (Z) = ______

The formulated LPP is

Maximize Z = ______ subject to 

______


Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×