मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Smita is a diet conscious house wife, wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily needs of vitamins A, B, and C for the family are 30, 20, and 16 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Smita is a diet conscious house wife, wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily needs of vitamins A, B, and C for the family are 30, 20, and 16 units respectively. For the supply of the minimum vitamin requirements Smita relies on 2 types of foods F1 and F2. F1 provides 7, 5 and 2 units of A, B, C vitamins per 10 grams and F2 provides 2, 4 and 8 units of A, B and C vitamins per 10 grams. F1 costs ₹ 3 and F2 costs ₹ 2 per 10 grams. How many grams of each F1 and F2 should buy every day to keep her food bill minimum

तक्ता
आकृती

उत्तर

Let food F1 be x grams and food F2 be y grams.

Since x and y cannot be negative, x ≥ 0, y ≥ 0.

F1 costs ₹ 3 and F2 costs ₹ 2 per 10 grams.

∴ Total cost = Z = 3x + 2y

We construct a table with constraints of vitamins A, B and C as follows:

Vitamins/Food F1 F2 Minimum requirement
A 7 2 30
B 5 4 20
C 2 8 16

From the table, the constraints are

7x + 2y ≥ 30

5x + 4y ≥ 20

2x + 8y ≥ 16

∴ Given problem can be formulated as follows:

Minimize Z = 3x + 2y

Subject to 7x + 2y ≥ 30

5x + 4y ≥ 20,

2x + 8y ≥ 16, x ≥ 0, y ≥ 0

To draw the feasible region, construct table as follows:

Inequality 7x + 2y ≥ 30 5x + 4y ≥ 20 2x + 8y ≥ 16
Corresponding equation (of line) 7x + 2y = 30 5x + 4y = 20 2x + 8y = 16
Intersection of line with X-axis `(30/7, 0)` (4, 0) (8, 0)
Intersection of line with Y-axis (0, 15) (0, 5) (0, 2)
Region Non-Origin side Non-Origin side Non-Origin side

Shaded portion XABCY is the feasible region, whose vertices are A(8, 0), B and C(0, 15),

B is the point of intersection of the lines 7x + 2y = 30 and 2x + 8y = 16

Solving the above equations, we get

x = 4, y = 1

∴ B ≡ (4, 1)

Here, the objective function is

Z = 3x + 2y

Z at A (8, 0) = 3(8) + 2(0) = 24

Z at B (4, 1) = 3(4) + 2(1)

= 12 + 2

= 14

Z at C (0, 15) = 3(0) + 2(15)

= 30

∴ Z has minimum value 14 at x = 4 and y = 1.

∴ Smita should buy 4 grams of food F1 and 1 gram of food F2 every day to keep her food bill minimum.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.6: Linear Programming - Q.4 (D)

संबंधित प्रश्‍न

A company produces two types of goods A and B, that require gold and silver. Each unit of type A requires 3 g of silver and 1 g of golds while that of type B requires 1 g of silver and 2 g of gold. The company can procure a maximum of 9 g of silver and 8 g of gold. If each unit of type A brings a profit of Rs 40 and that of type B Rs 50, formulate LPP to maximize profit.


Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Fill in the blank :

Graphical solution set of the in equations x ≥ 0, y ≥ 0 is in _______ quadrant


Fill in the blank :

The region represented by the in equations x ≤ 0, y ≤ 0 lines in _______ quadrants.


The constraint that a factory has to employ more women (y) than men (x) is given by _______


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Solve the following problem :

Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0


Solve the following problem :

Maximize Z = 4x1 + 3x2 Subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0


Solve the following problem :

Maximize Z = 60x + 50y Subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0


Solve the following problem :

A company manufactures bicyles and tricycles, each of which must be processed through two machines A and B Maximum availability of machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B. If profits are ₹ 180 for a bicycle and ₹ 220 on a tricycle, determine the number of bicycles and tricycles that should be manufacturing in order to maximize the profit.


Solve the following problem :

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?


Choose the correct alternative:

The maximum value of Z = 3x + 5y subjected to the constraints x + y ≤ 2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 is


Choose the correct alternative:

The minimum value of Z = 4x + 5y subjected to the constraints x + y ≥ 6, 5x + y ≥ 10, x, y ≥ 0 is


Choose the correct alternative:

The point at which the maximum value of Z = 4x + 6y subject to the constraints 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The corner points of the feasible region are (0, 3), (3, 0), (8, 0), `(12/5, 38/5)` and (0, 10), then the point of maximum Z = 6x + 4y = 48 is at


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

The maximum value of Z = 5x + 3y subjected to constraints 3x + y ≤ 12, 2x + 3y ≤ 18, 0 ≤ x, y is 20


State whether the following statement is True or False:

If LPP has two optimal solutions, then the LPP has infinitely many solutions


A set of values of variables satisfying all the constraints of LPP is known as ______


A company manufactures 2 types of goods P and Q that requires copper and brass. Each unit of type P requires 2 grams of brass and 1 gram of copper while one unit of type Q requires 1 gram of brass and 2 grams of copper. The company has only 90 grams of brass and 80 grams of copper. Each unit of types P and Q brings profit of ₹ 400 and ₹ 500 respectively. Find the number of units of each type the company should produce to maximize its profit


A wholesale dealer deals in two kinds of mixtures A and B of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of cashew and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew and 180 grams of hazel nuts. A dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew and 540 grams of hazel nuts. Mixture A costs ₹ 8 and B costs ₹ 12 per kg. How many kgs of each mixture should he use to minimize the cost of the kgs


Minimize Z = 24x + 40y subject to constraints

6x + 8y ≥ 96, 7x + 12y ≥ 168, x ≥ 0, y ≥ 0


Solve the following LPP graphically:

Maximize Z = 9x + 13y subject to constraints

2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequation Equation X intercept Y intercept Region
2x + 3y ≤ 18 2x + 3y = 18 (9, 0) (0, ___) Towards origin
2x + y ≤ 10 2x + y = 10 ( ___, 0) (0, 10) Towards origin
x ≥ 0, y ≥ 0 x = 0, y = 0 X axis Y axis ______

The feasible region is OAPC, where O(0, 0), A(0, 6),

P( ___, ___ ), C(5, 0)

The optimal solution is in the following table:

Point Coordinates Z = 9x + 13y Values Remark
O (0, 0) 9(0) + 13(0) 0  
A (0, 6) 9(0) + 13(6) ______  
P ( ___,___ ) 9( ___ ) + 13( ___ ) ______ ______
C (5, 0) 9(5) + 13(0) ______  

∴ Z is maximum at __( ___, ___ ) with the value ___.


A linear function z = ax + by, where a and b are constants, which has to be maximised or minimised according to a set of given condition is called a:-


Maximised value of z in z = 3x + 4y, subject to constraints : x + y ≤ 4, x ≥ 0. y ≥ 0


If z = 200x + 500y  .....(i)

Subject to the constraints:

x + 2y ≥ 10  .......(ii)

3x + 4y ≤ 24  ......(iii)

x, 0, y ≥ 0  ......(iv)

At which point minimum value of Z is attained.


Shraddho wants to invest at most ₹ 25,000/- in saving certificates and fixed deposits. She wants to invest at least ₹ 10,000/- in saving certificate and at least ₹ 15,000/- in fixed deposits. The rate of interest on saving certificate is 5% and that on fixed deposits is 7% per annum. Formulate the above problem as LPP to determine maximum income yearly.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×