मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : A company manufactures bicyles and tricycles, each of which must be processed through two machines A and B Maximum availability of machine A and B is respectively 120 a - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A company manufactures bicyles and tricycles, each of which must be processed through two machines A and B Maximum availability of machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine A and 10 hours on machine B. If profits are ₹ 180 for a bicycle and ₹ 220 on a tricycle, determine the number of bicycles and tricycles that should be manufacturing in order to maximize the profit.

आलेख
बेरीज

उत्तर

Let x number of bicycles and y number of tricycles be manufactured by the company.
∴ Total profit Z = 180x + 220y
This is the objective function to be maximized.
The given information can be tabulated as shown below:

  Bicycles
(x)
Tricycles
(y)
Maximum availability of time (hrs)
Machine A 6 4 120
Machine B 3 10 180

∴ The constraints are 6x + 4y ≤ 120, 3x + 10y ≤ 180, x ≥ 0, y ≥ 0
∴ Given problem can be formulated as
Maximize Z = 180x + 220y
Subject to, 6x + 4y ≤ 120, 3x + 10y ≤ 180 , x ≥ 0, y ≥ 0.
To draw the feasible region, construct the table as follows:

Inequality 6x + 4y ≤ 120 3x + 10y ≤ 180
Corresponding equation (of line) 6x + 4y = 120 3x + 10y = 180
Intersection of line with X-axis (20, 0) (60, 0)
Intersection of line with Y-axis (0, 30) (0, 18)
Region Origin side Origin side

Shaded portion OABC is the feasible region,
whose vertices are O ≡ (0, 0), A ≡ (20, 0), B and C ≡ (0, 18)
B is the point of intersection of the lines 3x + 10y = 180 and 6x + 4y = 120.
Solving the above equations, we get
B ≡ (10, 15)
Here the objective function is,
Z = 180x + 220y
∴ Z at O(0, 0) = 180(0) + 220(0) = 0
Z at A(20, 0) = 180(20) + 220(0) = 3600
Z at B(10, 15) = 180(10) + 220(15) = 5100
Z at C(0, 18) = 180(0) + 220(18) = 3960
∴ Z has maximum value 5100 at B(10, 15)
∴ Z is maximum when x = 10, y = 15

Thus, the company should manufacture 10 bicycles and 15 tricycles to gain maximum profit of ₹ 5100.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Linear Programming - Miscellaneous Exercise 6 [पृष्ठ १०४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Linear Programming
Miscellaneous Exercise 6 | Q 4.09 | पृष्ठ १०४

संबंधित प्रश्‍न

A farmer has a 100 acre farm. He can sell the tomatoes, lettuce, or radishes he can raise. The price he can obtain is Rs 1 per kilogram for tomatoes, Rs 0.75 a head for lettuce and Rs 2 per kilogram for radishes. The average yield per acre is 2000 kgs for radishes, 3000 heads of lettuce and 1000 kilograms of radishes. Fertilizer is available at Rs 0.50 per kg and the amount required per acre is 100 kgs each for tomatoes and lettuce and 50 kilograms for radishes. Labour required for sowing, cultivating and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labour are available at Rs 20 per man-day. Formulate this problem as a LPP to maximize the farmer's total profit.


The corner points of the feasible region determined by the following system of linear inequalities:
2x + y ≤ 10, x + 3y ≤ 15, xy ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is 


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit ₹ 25 ₹ 30  
Labour cost per unit ₹ 16 ₹ 20  
Raw material cost per unit ₹ 4 ₹ 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


Solve the following L.P.P. by graphical method :

Maximize : Z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Solve the following L.P.P. by graphical method :

Maximize: Z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of Z.


Choose the correct alternative:

The value of objective function is maximize under linear constraints.


State whether the following is True or False :

The region represented by the inqualities x ≤ 0, y ≤ 0 lies in first quadrant.


Graphical solution set of x ≤ 0, y ≥ 0 in xy system lies in second quadrant.


Solve the following problem :

Minimize Z = 4x + 2y Subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0, y ≥ 0


Solve the following problem :

Minimize Z = 2x + 3y Subject to x – y ≤ 1, x + y ≥ 3, x ≥ 0, y ≥ 0


Solve the following problem :

A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components, a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufacture per month to maximize profit? How much is the maximum profit?


Choose the correct alternative:

The minimum value of Z = 4x + 5y subjected to the constraints x + y ≥ 6, 5x + y ≥ 10, x, y ≥ 0 is


Choose the correct alternative:

The point at which the minimum value of Z = 8x + 12y subject to the constraints 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0 is obtained at the point


Choose the correct alternative:

The corner points of the feasible region are (4, 2), (5, 0), (4, 1) and (6, 0), then the point of minimum Z = 3.5x + 2y = 16 is at


State whether the following statement is True or False:

If LPP has two optimal solutions, then the LPP has infinitely many solutions


State whether the following statement is True or False:

Corner point method is most suitable method for solving the LPP graphically


Smita is a diet conscious house wife, wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily needs of vitamins A, B, and C for the family are 30, 20, and 16 units respectively. For the supply of the minimum vitamin requirements Smita relies on 2 types of foods F1 and F2. F1 provides 7, 5 and 2 units of A, B, C vitamins per 10 grams and F2 provides 2, 4 and 8 units of A, B and C vitamins per 10 grams. F1 costs ₹ 3 and F2 costs ₹ 2 per 10 grams. How many grams of each F1 and F2 should buy every day to keep her food bill minimum


A chemist has a compound to be made using 3 basic elements X, Y, Z so that it has at least 10 litres of X, 12 litres of Y and 20 litres of Z. He makes this compound by mixing two compounds (I) and (II). Each unit compound (I) had 4 litres of X, 3 litres of Y. Each unit compound (II) had 1 litre of X, 2 litres of Y and 4 litres of Z. The unit costs of compounds (I) and (II) are ₹ 400 and ₹ 600 respectively. Find the number of units of each compound to be produced so as to minimize the cost


Minimize Z = x + 4y subject to constraints

x + 3y ≥ 3, 2x + y ≥ 2, x ≥ 0, y ≥ 0


Solve the following LPP graphically:

Maximize Z = 9x + 13y subject to constraints

2x + 3y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

Solution: Convert the constraints into equations and find the intercept made by each one of it.

Inequation Equation X intercept Y intercept Region
2x + 3y ≤ 18 2x + 3y = 18 (9, 0) (0, ___) Towards origin
2x + y ≤ 10 2x + y = 10 ( ___, 0) (0, 10) Towards origin
x ≥ 0, y ≥ 0 x = 0, y = 0 X axis Y axis ______

The feasible region is OAPC, where O(0, 0), A(0, 6),

P( ___, ___ ), C(5, 0)

The optimal solution is in the following table:

Point Coordinates Z = 9x + 13y Values Remark
O (0, 0) 9(0) + 13(0) 0  
A (0, 6) 9(0) + 13(6) ______  
P ( ___,___ ) 9( ___ ) + 13( ___ ) ______ ______
C (5, 0) 9(5) + 13(0) ______  

∴ Z is maximum at __( ___, ___ ) with the value ___.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×