हिंदी

If the function f(x)=2x^3−9mx^2+12m^2 x+1, where m>0 attains its maximum and minimum at p and q respectively such that p^2=q, then find the value of m. - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 

उत्तर

We have
f(x)=2x39mx2+12m2x+1

f'(x)=6x218mx+12m2
Also, f''(x)=12x18m
Since, f(x) attains its maximum and minimum values at x = p and x = q, respectively, so f '(p) = 0 and

f '(q) = 0
f '(p) = 0

6p218mp+12m2=0

p23mp+2m2=0

(p2m)(pm)=0

p2m =0 or pm=0

p=2m or p=m

Similarly,
f '(q) = 0
q=2m or q=m
Now, consider the following cases:
Case I:
If p = 2m and q = 2m, then

p2=q

4m2=2m

2m2m=0

m(2m1)=0

m=1/2      (m>0)
But, this gives p = 1 as the point of minima, which is not true.

Case II:
If p = 2m and q = m, then
 p2=q

4m2=m

4m2m=0

m(4m1)=0

m=1/4      (m>0)
But, this gives p = 12 as the point of minima, which is not true.

Case III:
If pm and q = 2m, then
 p2=q

m2=2m

m22m=0

m(m2)=0

m=2      (m>0)
For this case, p = 2 and q = 4 are the points of maxima and minima, respectively.

Case IV:
If pm and qm, then
 p2=q

m2=m

m2m=0

m(m1)=0

m=1      (m>0)
But, this gives q = 1 as the point of maxima, which is not true.

Hence, the value of m is 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Patna Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×