Advertisements
Advertisements
प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
उत्तर
We have
f(x)=2x3−9mx2+12m2x+1
⇒f'(x)=6x2−18mx+12m2
Also, f''(x)=12x−18m
Since, f(x) attains its maximum and minimum values at x = p and x = q, respectively, so f '(p) = 0 and
f '(q) = 0
f '(p) = 0
⇒6p2−18mp+12m2=0
⇒p2−3mp+2m2=0
⇒(p−2m)(p−m)=0
⇒p−2m =0 or p−m=0
⇒p=2m or p=m
Similarly,
f '(q) = 0
⇒q=2m or q=m
Now, consider the following cases:
Case I:
If p = 2m and q = 2m, then
p2=q
⇒4m2=2m
⇒2m2−m=0
⇒m(2m−1)=0
∴m=1/2 (m>0)
But, this gives p = 1 as the point of minima, which is not true.
Case II:
If p = 2m and q = m, then
p2=q
⇒4m2=m
⇒4m2−m=0
⇒m(4m−1)=0
∴m=1/4 (m>0)
But, this gives p = 12 as the point of minima, which is not true.
Case III:
If p = m and q = 2m, then
p2=q
⇒m2=2m
⇒m2−2m=0
⇒m(m−2)=0
∴m=2 (m>0)
For this case, p = 2 and q = 4 are the points of maxima and minima, respectively.
Case IV:
If p = m and q = m, then
p2=q
⇒m2=m
⇒m2−m=0
⇒m(m−1)=0
∴m=1 (m>0)
But, this gives q = 1 as the point of maxima, which is not true.
Hence, the value of m is 2.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to