Advertisements
Advertisements
प्रश्न
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
विकल्प
\[\frac{\cos^2 \left( a + y \right)}{\cos a}\]
\[\frac{\cos a}{\cos^2 \left( a + y \right)}\]
\[\frac{\sin^2 y}{\cos a}\]
none of these
उत्तर
\[\frac{\cos^2 \left( a + y \right)}{\cos a}\]
We have,
\[ \Rightarrow \cos y\frac{dy}{dx} = 1 \times \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right)\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \cos\left( a + y \right) - x \sin\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} + x \sin\left( a + y \right)\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + x \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \left[ \cos y + \frac{\sin y}{\cos\left( a + y \right)} \times \sin\left( a + y \right) \right]\frac{dy}{dx} = \cos\left( a + y \right) .............\binom{ \because \sin y = x \cos\left( a + y \right)}{ \because x = \frac{\sin y}{\cos\left( a + y \right)}}\]
\[ \Rightarrow \left[ \frac{\cos\left( a + y \right) \cos y + \sin y \sin\left( a + y \right)}{\cos\left( a + y \right)} \right]\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{\cos\left( a + y - y \right)}{\cos\left( a + y \right)} \times \frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\cos a}\]
APPEARS IN
संबंधित प्रश्न
Differentiate etan x ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function ex sin 5x ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Find the minimum value of (ax + by), where xy = c2.
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.