Advertisements
Advertisements
प्रश्न
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
उत्तर
\[\text{ We have, y } = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}} \]
\[ \Rightarrow y = \left( \tan x \right)^y\]
Taking log on both sides,\[\log y = \log \left( \tan x \right)^y \]
\[ \Rightarrow \log y = y \log \tan x\]
Differentiating with respect to x using chain rule ,
\[\frac{1}{y}\frac{dy}{dx} = y\frac{d}{dx}\left\{ \log \tan x \right\} + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{y}{\tan x}\frac{d}{dx}\left( \tan x \right) + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{y} - \log \tan x \right) = \frac{y}{\tan x} \sec^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{\tan x} \sec^2 x \times \left( \frac{y}{1 - y\log \tan x} \right)\]
\[\text{Now}, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y \sec^2 \left( \frac{\pi}{4} \right)}{\tan\left( \frac{\pi}{4} \right)} \times \frac{y}{1 - y \log \tan\left( \frac{\pi}{4} \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y^2 \left( \sqrt{2} \right)^2}{1\left( 1 - y \log \tan 1 \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{2 \left( 1 \right)^2}{\left( 1 - 0 \right)} \left[ \begin{array}\because \left( y \right)_\frac{\pi}{4} = \left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{. . . \infty}}}\end{array} = 1 \right] \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 2\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles log cos x ?
Differentiate tan (x° + 45°) ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
Find the second order derivatives of the following function ex sin 5x ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
f(x) = 3x2 + 6x + 8, x ∈ R
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?