हिंदी

If X = a Sin T and Y = a ( Cos T + Log Tan T 2 ) , Find D 2 Y D X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?

उत्तर

\[\text { We have }, \]

\[x = a \sin t \text { and y }= a\left( \cos t + \log \tan\frac{t}{2} \right)\]

\[\text { On differentiating with respect to t, we get }\]

\[\frac{d x}{d t} = \frac{d}{d t}\left( a \sin t \right) = a \cos t\]

\[\text { and }\]

\[\frac{d y}{d t} = \frac{d}{d t}\left[ a\left( \cos t + \log \tan\frac{t}{2} \right) \right] = a\left( - \sin t + \frac{1}{\tan\frac{t}{2}} \times \sec^2 \frac{t}{2} \times \frac{1}{2} \right)\]

\[ = a\left( - \sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}} \right) = a\left( - \sin t + \frac{1}{\sin t} \right)\]

\[ = a\left( \frac{- \sin^2 t + 1}{\sin t} \right) = a\left( \frac{\cos^2 t}{\sin t} \right)\]

\[\text { Now, }\left( \frac{d y}{d x} \right) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\left( \frac{\cos^2 t}{\sin t} \right)}{a \cos t} = \cot\left( t \right)\]

\[\text { Therefore}, \]

\[\frac{d^2 y}{d x^2} = \frac{d}{d x}\left( \frac{d y}{d x} \right) = \frac{d}{d x}\left( \cot\left( t \right) \right)\]

\[ = \frac{d}{d t}\left( \cot\left( t \right) \right) \times \frac{dt}{dx} = - {cosec}^2 t \times \frac{1}{a \cos t}\]

\[ = - \left( \frac{1}{a \sin^2 t \cos t} \right)\]

\[\text { Hence }, \frac{d^2 y}{d x^2} = - \left( \frac{1}{a \sin^2 t \cos t} \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 44 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


Differentiate \[3^{e^x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×