हिंदी

Differentiate Sin − 1 ( 4 X √ 1 − 4 X 2 ) with Respect to √ 1 − 4 X 2 , If X ∈ ( − 1 2 √ 2 , 1 √ 2 √ 2 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?
योग

उत्तर

\[\text{ Let, u } = \sin^{- 1} \left( 4x\sqrt{1 - 4 x^2} \right)\]
\[ \text { put } 2x = \cos\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \times \cos\theta\sqrt{1 - \cos^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\cos\theta \sin\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin 2\theta \right) . . . \left( i \right)\]
\[ \text { Let, v }= \sqrt{1 - 4 x^2} . . . \left( ii \right)\]
\[\text{Here}, \]
\[ x \in \left( - \frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}} \right)\]
\[ \Rightarrow 2x \in \left( - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow \theta \in \left( \frac{\pi}{4}, \frac{3\pi}{4} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = \pi - 2\theta .....\left[ \text { Since }, \sin^{- 1} \left( sin \theta \right) = \pi - \theta , \text{ if }\theta \in \left( \frac{\pi}{2}, \pi \right) \right]\]
\[ \Rightarrow u = \pi - 2 \cos^{- 1} \left( 2x \right) \left[ \text { Since}, 2x = \cos\theta \right]\]

Differentiating it with respect to x,

\[\frac{du}{dx} = 0 - 2\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{4}{\sqrt{1 - 4 x^2}} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right)\]
\[\frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}}\]
\[\text { but,} x \in \left( - \frac{1}{2}, - \frac{1}{2\sqrt{2}} \right)\]
\[\frac{dv}{dx} = \frac{- 4\left( - x \right)}{\sqrt{1 - 4 \left( - x \right)^2}}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{4x}{\sqrt{1 - 4 x^2}} . . . \left( iv \right)\]
\[\text { Diferentiating equation } \left( ii \right) \text { with respect to x }, \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\frac{d}{dx}\left( 1 - 4 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\left( - 8x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}} . . . \left( v \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( v \right)\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{4}{\sqrt{1 - 4 x^2}} \times \frac{\sqrt{1 - 4 x^2}}{- 4x}\]
\[ \therefore \frac{du}{dv} = - \frac{1}{x}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.08 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.08 | Q 5.1 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cosec x ?


Differentiate sin (log x) ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×