Advertisements
Advertisements
प्रश्न
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
विकल्प
`-n^2y`
my
`n^2y`
None of these
उत्तर
\[\left( c \right) n^2 y\]
\[ y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x\]
\[\text { Differentiating the above equation with respect to x }\]
\[\left( \frac{1}{n} y^\frac{1}{n} - 1 - \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2\]
\[\frac{1}{ny}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2ny . . . . . \left( 1 \right)\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( \frac{1}{n} y^\frac{1}{n} - 1 + \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2n y_1 \]
\[ny\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + {y_1}^2 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y y_1 \]
\[\text{ Dividing the above equation by } y_1 \]
\[\frac{ny}{y_1}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y\]
\[\text {Putting y_1 from equation }\left( 1 \right)\]
\[\frac{\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2}{2} y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y . . . . . \left( 2 \right)\]
\[\text { Now,} \]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right)^2 - 4\]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = 4 x^2 - 4 . . . . . \left( 3 \right)\]
\[\text { Putting the value of }\left( 3 \right)in\left( 2 \right)\]
\[\frac{4\left( x^2 - 1 \right) y_2}{2} + 2x y_1 = 2 n^2 y\]
\[\left( x^2 - 1 \right) y_2 + x y_1 = n^2 y\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
f(x) = 3x2 + 6x + 8, x ∈ R