हिंदी

Find D Y D X , When X = Cos − 1 1 √ 1 + T 2 and Y = Sin − 1 T √ 1 + T 2 , T ∈ R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?

उत्तर

\[\text{ We have, x } = \cos^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]

\[\Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{t}{\sqrt{t^2} \times \left( 1 + t^2 \right)}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{1}{1 + t^2} . . . \left( i \right)\]
\[\text{ Now, y }= \sin^{- 1} \left( \frac{1}{\sqrt{1 + t^2}} \right)\]

\[\Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \left( \frac{1}{\sqrt{1 + t^2}} \right)^2}}\frac{d}{dt}\left( \frac{1}{\sqrt{1 + t^2}} \right)\]
\[ \Rightarrow \frac{dy}{dt} = \frac{1}{\sqrt{1 - \frac{1}{\left( 1 + t^2 \right)}}}\left\{ \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}} \right\}\frac{d}{dt}\left( 1 + t^2 \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\left( 1 + t^2 \right)^\frac{1}{2}}{\sqrt{1 + t^2 - 1}} \times \frac{- 1}{2 \left( 1 + t^2 \right)^\frac{3}{2}}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{2\sqrt{t^2} \times \left( 1 + t^2 \right)}\left( 2t \right)\]
\[ \Rightarrow \frac{dx}{dt} = \frac{- 1}{1 + t^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{\left( 1 + t^2 \right)} \times \frac{\left( 1 + t^2 \right)}{- 1}\]
\[ \Rightarrow \frac{dy}{dx} = - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.07 | Q 12 | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan (x° + 45°) ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


Differentiate x2 with respect to x3


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = etan x, then (cos2 x)y2 =


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×