Advertisements
Advertisements
प्रश्न
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
उत्तर
\[\text { We have, x } = \frac{\sin^3 t}{\sqrt{\cos2t}} \text { and y } = \frac{\cos^3 t}{\sqrt{\cos2t}}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{d}{dt}\left[ \frac{\sin^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \sin^3 t \right) - \sin^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\left( 3 \sin^2 t \right)\frac{d}{dt}\left( \sin t \right) - \sin^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\sqrt{\cos2t}\left( \sin^2 t \cos t \right) - \frac{\sin^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[Now, \frac{dy}{dt} = \frac{d}{dt}\left[ \frac{\cos^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \cos^3 t \right) - \cos^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\left( 3 \cos^2 t \right)\frac{d}{dt}\left( \cos t \right) - \cos^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dy}{dt} = \frac{3\sqrt{\cos2t} \cos^2 t \left( - \sin t \right) - \frac{\cos^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dy}{dt} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}} \times \frac{\cos2t\sqrt{\cos2t}}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin t \cos t\left[ - 3\cos2t \cos t + 2 \cos^3 t \right]}{\sin t \cos t\left[ 3\cos2t \sin t + 2 \sin^3 t \right]}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left[ - 3\left( 2 \cos^2 t - 1 \right)\cos t + 2 \cos^3 t \right]}{\left[ 3\left( 1 - 2 \sin^2 t \right)\sin t + 2 \sin^3 t \right]} ............[{\cos2t = 2 \cos^2 t - 1}, {\cos2t = 1 - 2 \sin^2 t}]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 4 \cos^3 t + 3\cos t}{3\ sint - 4 \sin^3 t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \cos3t}{\sin3t} ..............[{\cos3t = 4 \cos^3 t - 3\cos t}, {\sin3t = 3\sin t - 4 \sin^3 t}]\]
\[ \therefore \frac{dy}{dx} = - \cot3t\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?