Advertisements
Advertisements
प्रश्न
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
उत्तर
\[\text{ We have, y} = \frac{1}{2}\log\left( \frac{1 - \cos2x}{1 + \cos2x} \right)\]
\[ \Rightarrow y = \frac{1}{2}\log\left( \frac{2 \sin^2 x}{2 \cos^2 x} \right) \]
\[ \Rightarrow y = \frac{1}{2}\log\left( \tan^2 x \right)\]
\[ \Rightarrow y = \frac{2}{2}\log \tan x \]
\[ \Rightarrow y = \log \tan x\]
Differentiate with respect to x,
\[\frac{d y}{d x} = \left( \log \tan x \right)\]
\[ = \frac{1}{\tan x} \times \frac{d}{dx}\left( \tan x \right) \]
\[ = \frac{\sec^2 x}{\tan x}\]
\[ = \frac{1}{\cos^2 x \times \frac{\sin x}{\cos x}}\]
\[ = \frac{1}{\sin x \cos x}\]
\[ = \frac{2}{2\sin x \cos x}\]
\[ = \frac{2}{\sin2x} \]
\[So, \frac{d y}{d x} = 2\text{cosec }2x\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate sin (3x + 5) ?
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate `2^(x^3)` ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?