Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
उत्तर
\[\text { Let, u }= \sin^{- 1} \left( 2ax\sqrt{1 - a^2 x^2} \right)\]
\[\text { Put ax } = \sin\theta \Rightarrow \theta = \sin^{- 1} \left( ax \right)\]
\[ \therefore u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta\cos\theta \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { And }\]
\[\text { Let,} \]
\[ v = \sqrt{1 - a^2 x^2}\]
\[\text { Differentiating it with respect to } x, \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - a^2 x^2}} \times \frac{d}{dx}\left( 1 - a^2 x^2 \right) \]
\[ \Rightarrow \frac{dv}{dx} = \left( \frac{0 - 2 a^2 x}{2\sqrt{1 - a^2 x^2}} \right) \]
\[ \Rightarrow \frac{dv}{dx} = \frac{- a^2 x}{\sqrt{1 - a^2 x^2}} . . . \left( ii \right)\]
\[\text { Here }, \]
\[ - \frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{1}{\sqrt{2}} < \sin\theta < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]
\[\text { So, from equation }\left( i \right), \]
\[u = 2\theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta,\text { if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow u = 2 \sin^{- 1} x\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 2 \times \frac{1}{\sqrt{1 - \left( ax \right)^2}}\frac{d}{dx}\left( ax \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{1 - a^2 x^2}\left( a \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{2a}{1 - a^2 x^2} . . . \left( iii \right) \]
\[\text { Dividing equation } \left( iii \right) by \left( ii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{2a}{\sqrt{1 - a^2 x^2}} \right)\left( \frac{\sqrt{1 - a^2 x^2}}{- a^2 x} \right)\]
\[ \therefore \frac{du}{dv} = - \frac{2}{ax}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e3x.
Differentiate sin2 (2x + 1) ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =