हिंदी

If X 16 Y 9 = ( X 2 + Y ) 17 ,Prove that X D Y D X = 2 Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?

उत्तर

\[\text{ We have}, x^{16} y^9 = \left( x^2 + y \right)^{17} \]

Taking log on both sides, 

\[\log\left( x^{16} y^9 \right) = \log \left( x^2 + y \right)^{17} \]

\[ \Rightarrow 16\log x + 9\log y = 17\log\left( x^2 + y \right)\]

Differentiating with respect to x using chain rule,

\[16\frac{d}{dx}\left( \log x \right) + 9\frac{d}{dx}\left( \log y \right) = 17\frac{d}{dx}\log\left( x^2 + y \right)\]

\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\frac{d}{dx}\left( x^2 + y \right)\]

\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\left[ 2x + \frac{dy}{dx} \right]\]

\[ \Rightarrow \frac{9}{y}\frac{dy}{dx} - \frac{17}{x^2 + y}\frac{dy}{dx} = \frac{34x}{x^2 + y} - \frac{16}{x}\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9}{y} - \frac{17}{x^2 + y} \right] = \frac{34x}{x^2 + y} - \frac{16}{x}\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9\left( x^2 + y \right) - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16\left( x^2 + y \right)}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 + 9y - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 - 8y}{y\left( x^2 + y \right)} \right] = \left[ \frac{18 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\left[ \frac{2\left( 9 x^2 - 8y \right)}{9 x^2 - 8y} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{x}\]

\[ \Rightarrow x\frac{dy}{dx} = 2y\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 34 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate x2 with respect to x3


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function ex sin 5x  ?


Find the second order derivatives of the following function x3 log ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×