Advertisements
Advertisements
प्रश्न
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
उत्तर
\[\text { Given,} y = x^x \]
\[\text { Taking logarithm on both sides, we get }\]
\[\log y = x \log x\]
\[\text { Differentiating both sides w . r . t . x, we get }\]
\[\frac{1}{y}\frac{dy}{dx} = x \times \frac{1}{x} + \log x\]
\[ \Rightarrow \frac{dy}{dx} = y(1 + \log x)\]
\[ \Rightarrow \frac{dy}{dx} = x^x (1 + \log x) . . . \left( 1 \right)\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = x^{2x} \left( 1 + \log x \right)^2\]
\[\text { Now }, \frac{d^2 y}{d x^2} = x^x \times \frac{1}{x} + \left( 1 + \log x \right)\frac{d}{dx}\left( x^x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = x^{x - 1} + x^x \left( 1 + \log x \right)^2 \left[ \text { Using } \left( 1 \right) \right] . . . \left( 2 \right)\]
\[ \therefore \frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x}\]
\[ = x^{x - 1} + x^x \left( 1 + \log x \right)^2 - \frac{x^{2x} \left( 1 + \log x \right)^2}{x^x} - \frac{x^x}{x}\]
\[ = x^{x - 1} + x^x \left( 1 + \log x \right)^2 - x^x \left( 1 + \log x \right)^2 - x^{x - 1} \]
\[ = 0\]
संबंधित प्रश्न
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
Find the second order derivatives of the following function log (log x) ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If y = etan x, then (cos2 x)y2 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.