हिंदी

If Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 is Equal to (A) −(N − 1)2 Y (B) (N − 1)2y - Mathematics

Advertisements
Advertisements

प्रश्न

If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to

विकल्प

  • −(n − 1)2 y

  • (n − 1)2y

  • −n2y

  •  n2y

MCQ

उत्तर

(a) −(n − 1)2 y

Here,

\[y = x^{n - 1} \log x\]

\[ \Rightarrow y_1 = \left( n - 1 \right) x^{n - 2} \log x + \frac{x^{n - 1}}{x}\]

\[ \Rightarrow y_1 = \frac{\left( n - 1 \right) x^{n - 1} \log x + x^{n - 1}}{x}\]

\[ \Rightarrow x y_1 = \left( n - 1 \right)y + x^{n - 1} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 2} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \frac{\left( n - 1 \right) x^{n - 1}}{x}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 1} \]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)\left\{ x y_1 - \left( n - 1 \right)y \right\}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)x y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 = 2x\left( n - 1 \right) y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 - 2x\left( n - 1 \right) y_1 = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 \left( 1 - 2n + 2 \right) = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + \left( 3 - 2n \right)x y_1 = - \left( n - 1 \right)^2 y\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.3 | Q 24 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate sin2 (2x + 1) ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


Find the second order derivatives of the following function tan−1 x ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a + bx2, a, b arbitrary constants, then

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×